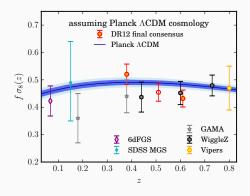
A NEW APPROACH TO MEASURE THE EVOLUTION STRUCTURE GROWTH

Rossana Ruggeri


July 2018

Swinburne University, Melbourne

CLUSTERING ANALYSIS GOALS

- · Improve the methodology used to analyse data (BAO)
- · Development of fast method to measure anisotropic signal (P, ξ)
- · How to combine data from different volumes within the surveys.

HOW TO COMBINE DATA FROM WIDE REDSHIFT RANGES

(S. Alam et al. 2016)

HOW TO COMBINE DATA FROM WIDE REDSHIFT RANGES

Redshift-bins splitting with traditional clustering analysis,

- · loss of signal across bin boundaries
- · computational expensive
- · Window function effects

Optimal redshift weights as smoother windows on data,

- · compression of the information in the redshift direction
- · sensitivity to evolution with redshift
- · decrease computational effort for large data sets

Accounting for evolution,

$$\cdot \xi(r,z) \rightarrow b(z), f\sigma_8(z), \alpha_{\parallel}(z), \alpha_{\perp}(z)...$$

$$\cdot \xi(r) = \int dz \, \xi(r,z)$$

Accounting for evolution in an optimal way

$$\cdot \xi_w(r) = \int dz \, \xi(r,z) w(z)$$

· w(z) for different parameters, based on a fiducial model

4

THE SEARCH FOR OPTIMAL WEIGHTS

Linear compression of a data-set ${\bf x}$, Gaussian distributed, with mean μ and covariance ${\it C}$,

$$y = \mathbf{w}^{\mathsf{T}} \mathbf{x}. \tag{1}$$

For a single parameter θ_i ,

$$F_{ii} = \frac{1}{2} \left(\frac{\mathbf{w}^{\mathsf{T}} C_{,i} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} C \mathbf{w}} \right)^{2} + \frac{\left(\mathbf{w}^{\mathsf{T}} \mu_{,i} \right)^{2}}{\mathbf{w}^{\mathsf{T}} C \mathbf{w}}, \tag{2}$$

We maximise F_{ii} w.r.t **w** assuming C a priori, $C_{,i} = 0$ and the only non-trivial eigenvector is

$$\mathbf{w}^{\mathsf{T}} = C^{-1}\mu_{,i},\tag{3}$$

Modelling $\xi(r,z)$, P(k,z)

$$\xi(r) = \int dz \, \xi(r,z) w(z)$$

Modeling $\xi(r,z)$ evolution by allowing free functions (i.e. Taylor expanding cosmological quantities) and making sure there is enough freedom in other parameters. E.g. for the linear bias, $b(z) = A + Bz^2$.

- · derive a set of weights for each of the parameters of interest, (A, B)
- · apply weights to the data computing the weighted multipoles $P_{0,A}, P_{2,A}, P_{0,B}, P_{2,B}...$
- · include weights in the model \rightarrow window function
- \cdot joint fit of all the multipoles w.r.t the different weights.

Modelling the evolution about Λ CDM: $\Omega_m(z, q_0, q_1)$, $f\sigma_8(z, p_0, p_1)$

$$\frac{\Omega_m(z)}{\Omega_{m,\text{fid}}(z)} = q_0 \left[1 + q_1 y(z) + \frac{1}{2} q_2 y(z)^2 \right],$$

$$y(z) + 1 \equiv \Omega_{m,\text{fid}}(z) / \Omega_{m,\text{fid}}(z_\rho);$$
(4)

A common framework to test for deviations both in terms of geometry and growth rate, $f[\Omega_m(q_i, z)]$, $[H, D_A][\Omega_m(q_i, z)]$

7

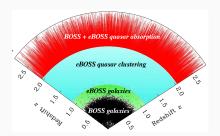
Modelling the evolution about Λ CDM: $\Omega_m(z, q_0, q_1)$, $f\sigma_8(z, p_0, p_1)$

$$\frac{\Omega_m(z)}{\Omega_{m,\text{fid}}(z)} = q_0 \left[1 + q_1 y(z) + \frac{1}{2} q_2 y(z)^2 \right],$$

$$y(z) + 1 \equiv \Omega_{m,\text{fid}}(z) / \Omega_{m,\text{fid}}(z_p);$$
(4)

A common framework to test for deviations both in terms of geometry and growth rate, $f[\Omega_m(q_i, z)]$, $[H, D_A][\Omega_m(q_i, z)]$

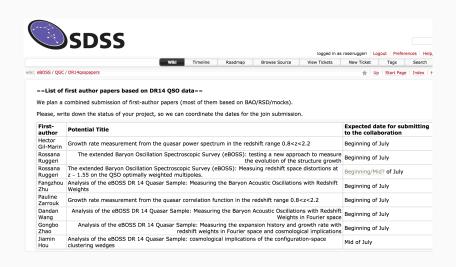
$$\frac{f\sigma_8(z)}{f\sigma_{8,\text{fid}}(z)} = p_0 \left[1 + p_1 x(z) + \frac{1}{2} p_2 x(z)^2 \right],\tag{5}$$


It allows a wider range of deviations from the Λ CDM scenario, as it does not assume any particular form or relation for f and σ_8

FITTING MODELS TO THE DATA

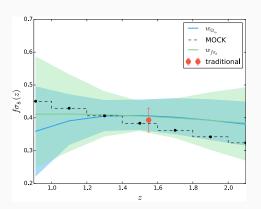
- · Linear compression of a data-set $y = \mathbf{w}^T \mathbf{x}$.
- search for optimal weights → fisher matrix (RSD: Ruggeri et al 2017; Mueller et al 2017; Zhu et al 2015;)
- · derive a set of weights for each of the parameters of interest (e.g. q_i , p_i)
- · apply weights to the data; compute weighted multipoles: $P_{0,q_0}, P_{2,q_0}, \dots$
- · include weights in the model \rightarrow (TNS 1-loop)
- · joint fit of all the multipoles w.r.t the different weights.

EBOSS IN A NUTSHELL


- Part of SDSS-IV collaboration
- · Spectroscopic survey: $\sigma_z \sim 0.001$
- · Apache Point Telescope 2.5m
- \cdot 2014 2019 observing LRGs, ELGs, quasars, Lylpha
- · 1000 fibres per plate ($\sim 7 deg^2$)

DR14Q data. RSD & iso-BAO analyses completed. Measurements on D_A , H and $f\sigma_8$ at z=1.52 for the first time. (Ata et al 2017);

EBOSS IN A NUTSHELL



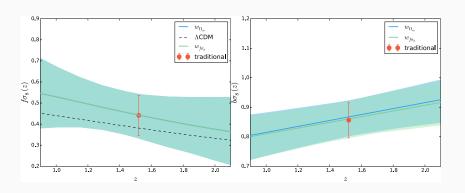
Now to collabor Done now ore touns+ alst End 2018 Catalogues -K-4pue not telessed RSD+1300 AIPH. KSD 1002016 ELG-1 HLPHA. BAO POST -050 core team 1+ alph RSD+BAK moci End 2019

The extended Baryon Oscillation Spectroscopic Survey (eBOSS): testing a new approach to measure the evolution of the structure growth

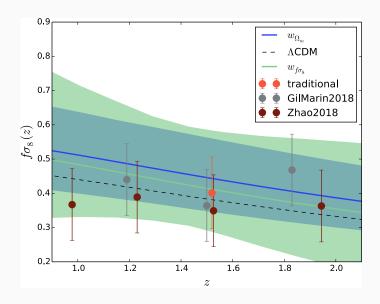
arXiv:1712.03997

Rossana Ruggeri^{1*}, Will J. Percival ¹, Eva-Maria Mueller ¹, Héctor Gil-Marín ^{2,3}, Fangzhou Zhu ⁴, Nikhil Padmanabhan ⁴, Gong-Bo Zhao ^{5,1}

The quasar sample represents an important sample-test to investigate the improvements possible through the optimal weights. Characterized by a wide redshift range, (0.8 - 2.2), and lower density 82.6/deg2;


The extended Baryon Oscillation Spectroscopic Survey (eBOSS): Measuring the evolution of the growth rate using redshift space distortions between redshift 0.8 and 2.2

arXiv:1801.02891


Rossana Ruggeri 1* , Will J. Percival 1 , Héctor Gil-Marín, Florian Beutler 1 , Eva-Maria Mueller 1 , Fangzhou Zhu 4 , Nikhil Padmanabhan 4 , Gong-Bo Zhao 5,1 et eBOSS collaboration

EBOSS DR14: $f\sigma_8(p_i, z), f\sigma_8[\Omega_m(q_i, z)], b\sigma_8(z)$

EBOSS DR14: $f\sigma_8(p_i, z), f\sigma_8[\Omega_m(q_i, z)], b\sigma_8(z)$

DR16 + FUTURE SURVEYS

- · More signal \rightarrow evolution to break degeneracy
- · Optimal weights technique, as a more efficient and accurate alternative would enhance S/N, considering all galaxy pairs.
- · Weighting scheme: the method is flexible and works for other sets of parameters;
- Future surveys: 20 30 million objects, 0.5 < z < 3.5; 15-18,000 deg^2 ;
- · Traditional analysis: e.g for DESI, to be repeated on 35 redshift bins, neglecting cross correlation between different volumes.

