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Gaussian initial conditions

Box of side L, fundamental frequency ky = 27/ L.

ICs determined by the initial power spectrum is Py (k) = Pz (k)/D?(z), set by
fiducial cosmology.

Gaussian density field in Fourier space:

L [Pu(k) e
0k = 2k3 rre’ ., (1

with 7 Rayleigh-distributed and 6x uniformly distributed in [0, 27).

For a gaussian field, (dy, ... di, ), = 0for N > 2.



Statistics of N-body simulations

N-body simulations are useful for estimating the power spectrum at small-scales.

e A single simulation could have large fluctuations at large scales (cosmic
variance), thus introducing a bias for the estimation of power at small scales

e Running a large number of simulations is computationally expensive

Since we are limited by the scatter in P(k) ~ (0x0—x) ~ (rkr_x), we can reduce
this scatter by fixing the amplitude ry.



Fixed-amplitude initial conditions

Fixed-amplitude linear density field: 7« = /2

o = [P o @
kf

with 6y uniformly distributed in [0, 27).
First formalized in Pontzen et al., 2016, and Angulo & Pontzen, 2016.
We lose gaussianity of linear field.

All even connected N-point correlation functions are different from zero:
(0,060t ) #0 , (0h0L060060) 0 , . @

Are these relevant for the density field?



Quantifying non-gaussianity of fixed-amplitude density field

Higher order statistical moments of the fixed-amplitude field smoothed on a scale R:

; _ pa(R) _ ('),
fa(R) = o*(R) ~ (02(x))2
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In general, fi2n, (R) o V7"



Quantifying non-gaussianity of fixed-amplitude density field
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Covariance matrix

Power spectrum estimator:

Za iq = Pk = <P(k)> (5)
k qek
Covariance matrix
q67P> + <6q5*q5péfp>c} =
ks qck; pEk; (6)
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Covariance in fixed-amplitude initial conditions

With fixed-amplitude ICs, the even N-point correlation functions on the linear fields
are non-zero:

(5, 515251535154>C = ngk) [5k125g45£351ﬁ;4 4O o G e+ 5k]30k245§145523}
(7)
Therefore, the covariance becomes:
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The covariance matrix can be written as

26%
Nk? P2 (ks), (9)

Crrix = Cqrc —

where Cgrc contains both the term ~ P?(k) and the term ~ T,,; therefore we
can recover the “real” covariance matrix with gaussian ICs:

2055 o
Carc =Crrx + N, Pr(kq). (10)

i

At a given redshift z, we would expect

265 2 2
Ceic(z) = Crix(z) + Ny D*(2) P (ki). (1)




Pairing fixed-amplitude simulations

Two fixed-amplitude realisations, with opposite phases: 47, 6#(. At linear level,
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State of the art

Further extensions in a recent paper (Villaescusa-Navarro et al., 2018)
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Covariance matrix in fixed-and-paired initial conditions

Given the power spectrum of the paired realisation P(k)* = 1 [P (k) + P*(k)],
all sorts of cancellations arise in the covariance matrix: further suppression

Power spectrum covariance of fixed-and-paired realizations:

B8 P ) Phk)  [O(6L) (13)
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Comparison with the fixed-amplitude case

26
Nk
46K

= N PL(k) [Ply(k) + Ph(k)]  [0(6D)]

¢l =L [Pt - PRk)'] =

i



Numerical Analysis: fixed-amplitude variance in ZA

(AP(k)/P(k))?

[AO et al., preliminary]
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Variance is suppressed, especially at large scales.



Numerical Analysis: fixed-amplitude variance in ZA

APEix = APZ1c + APRgre == APZ;c = APErx — APRgre

(AP(k)/P(k))?
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Effect is almost completely under control, except for a “bump”-like feature.



Numerical Analysis: fixed-amplitude variance in ZA

[AO et al., preliminary]
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Replacing the linear growth with the non-linear propagator from RPT,
the feature is almost canceled.



Numerical Analysis: fixed-and-paired variance in ZA

[AO et al., preliminary]
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Further variance suppression in the fixed-and-paired realisations.



Numerical Analysis: PINOCCHIO mocks and spherical window function

Set of 10,000 PINOCCHIO mock simulations with gaussian IC, 1,000 mocks with
fixed-amplitude, and 1,000 fixed-and-paired.

[AO et al., preliminary]
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Suppression is less evident (probably
due to the cut-off in halo mass).

Spherical window function
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apparently removes the suppression
in the variance (to be investigated).
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Conclusions

e Fixing the amplitude of the density field suppresses the variance

e The observed suppression is mostly consistent with the theoretical prediction
e Pairing fixed-amplitude realisations introduces a further suppression

e Bias seems to play a role in the suppression

¢ Introducing a window function the suppression is practically removed

Thank you for listening



