Constraining neutrino mass from galaxy clustering measurements

Matteo Zennaro DiPC, Donostia-San Sebastián

with Julien Bel, Carmelita Carbone, Raúl Angulo, Luigi Guzzo, Jason Dossett

Cosmological neutrinos

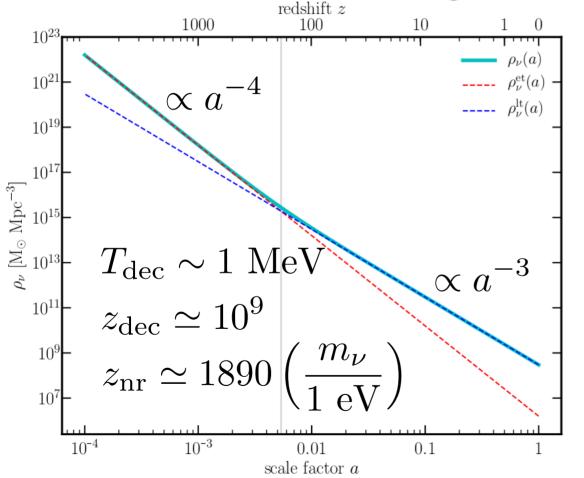
• Oscillation experiments (95%): $M_v = \Sigma m_v > 0.06 \text{ eV}$

Gonzales-Garcia et al (2014), Forero et al (2014), Esteban et al (2017)

- β -decay experiments (95%): m(v_e) < 2.2 eV Kraus et al (2005)
- In cosmology: hot dark matter accounting for a fraction of total dark matter

 $M_v < 0.49 \text{ eV}$ (Planck collaboration, 2015), $M_v < 0.22 \text{ eV}$ (Pellejero-Ibanez et al, 2016), $M_v < 0.12 \text{ eV}$ (Palanque-Delabrouille et al, 2015) and many many more...

Cosmological neutrinos



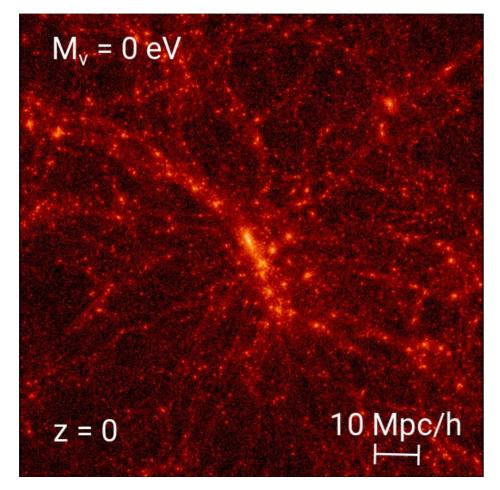
- Light (< 1 eV)
- Weakly interacting
- Fermi-Dirac distribution
- Let's consider:
 - Total mass M
 - Degenerate case $M_v = 3 m_v$

Growth of matter overdensities

$$\frac{\partial^2 \delta_i}{\partial t^2} + 2H \frac{\partial \delta_i}{\partial t} = \frac{c_s^2 \nabla^2 \delta_i}{a^2} + 4\pi G \bar{\rho} \delta_{\text{tot}}$$

$$k_{\rm FS} = \sqrt{\frac{4\pi G\bar{\rho}a^2}{c_s^2}} \simeq 0.91 \frac{\sqrt{\Omega_m(1+z) + \Omega_\Lambda}}{(1+z)^2} \left(\frac{m_\nu}{1\,{\rm eV}}\right) h\,{\rm Mpc}^{-1}$$

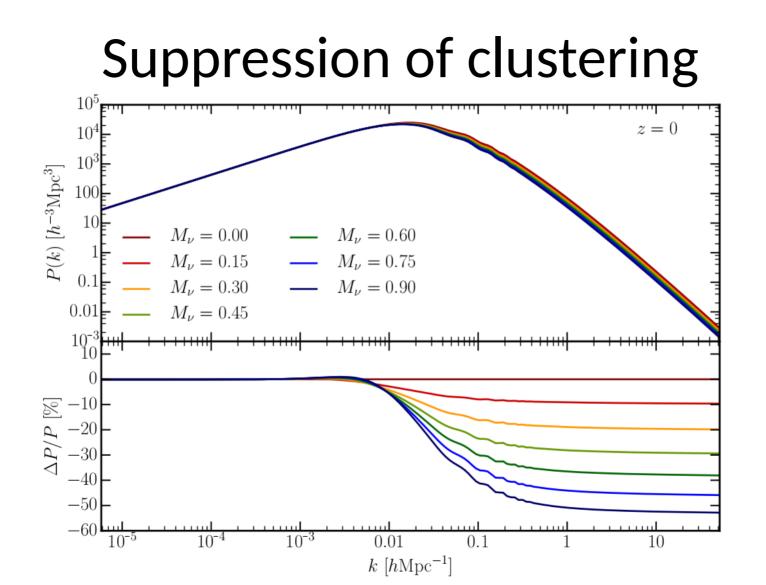
Suppression of clustering



Poisson's equation

$$\nabla^2 \varphi = 4\pi G \bar{\rho} a^2 \left[(1 - \mathfrak{f}_{\nu}) \delta_{\text{cold}} + \mathfrak{f}_{\nu} \delta_{\nu} \right]$$
Effectively \rightarrow 0, for $k > k_{\text{FS}}$

DEMNUni simulations by C. Carbone



Galaxy clustering ratio

Galaxy clustering

- Galaxies are a discrete, biased sampling of the underlying matter field
- If the bias function is local and deterministic

$$\delta_g(x) = F[\delta(x)]$$

• If it is also smooth enough

$$\delta_g(x) = \sum_{i=0}^{\infty} \frac{b_i}{i!} \delta^i(x)$$

Fry & Gaztañaga (1993)

Clustering ratio

Bel & Marinoni (2014)

• 2PCF:

$$\xi_{g,R}(r) = b_1^2 \xi_R(r)$$

• Variance:

 $\sigma_{g,R}^2 = b_1^2 \sigma_R^2$

• CR:
$$\eta_{g,R}(r) \equiv \frac{\xi_{g,R}(r)}{\sigma_{g,R}^2} \equiv \frac{\xi_R(r)}{\sigma_R^2} \equiv \eta_R(r)$$

• z-space (Kaiser):

 $\eta_{g,R}^z(r) \equiv \eta_R(r)$

Clustering ratio: 2nd order

• Hierarchical growth of fluctuations

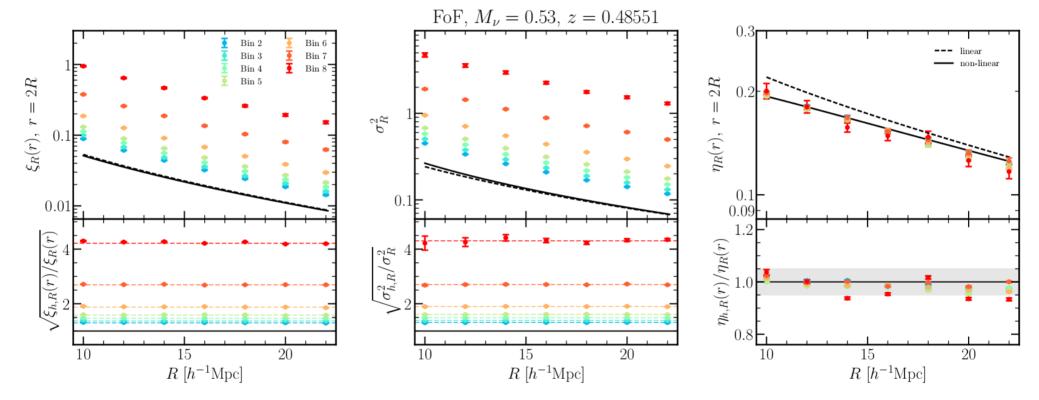
$$\left\langle \delta_R^n \right\rangle_c = S_n \ \sigma_R^{2(n-1)}$$
$$\left\langle \delta_{i,R}^n \delta_{j,R}^m \right\rangle_c = C_{nm} \ \xi_R(r) \ \sigma_R^{2(n+m-2)}$$

• With large enough R, CR is unbiased

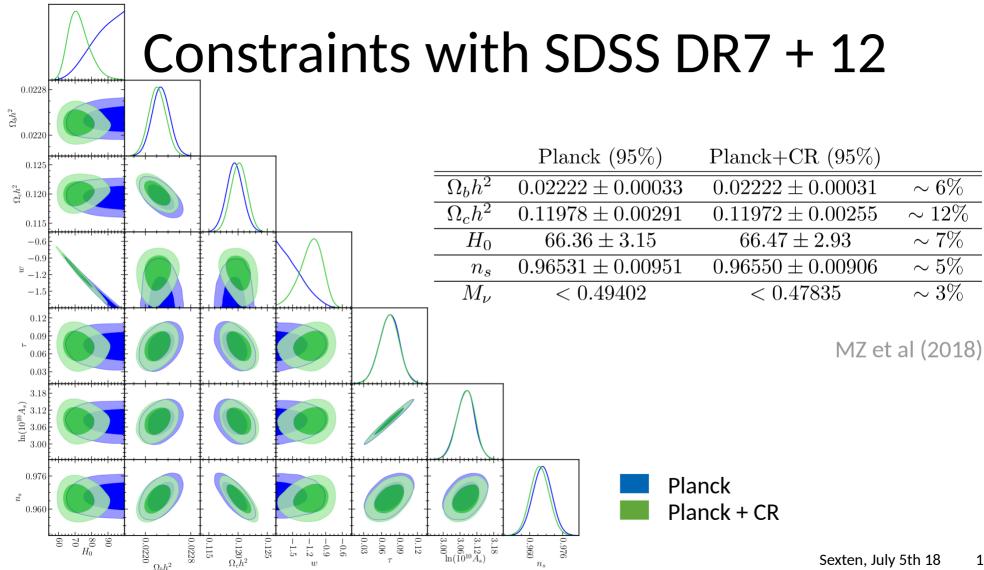
$$\eta_{g,R}(r) \sim \eta_R(r) - \left\{ (S_{3,R} - C_{12,R}) \frac{b_2}{b_1} + \frac{1}{2} \left(\frac{b_2}{b_1} \right)^2 \right\} \xi_R(r) + \frac{1}{2} \left(\frac{b_2}{b_1} \right)^2 \ \eta_R(r) \ \xi_R(r)$$

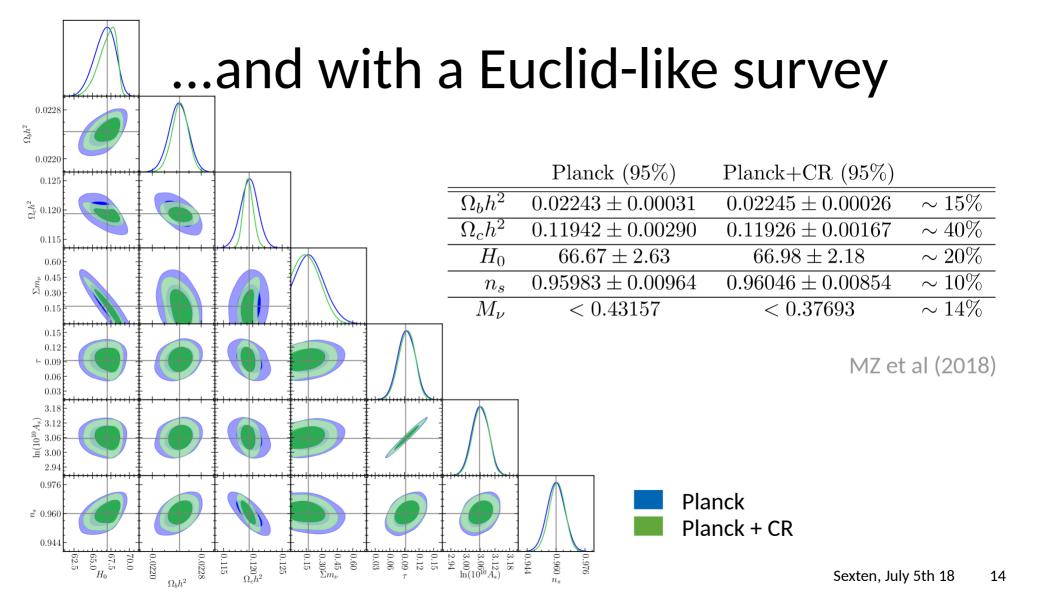
Possible nonlocal contributions only affect b_2 (Bel et al, 2015)

Clustering ratio: unbiased



MZ et al (2018)





Galaxy power spectrum

Galaxy bias: subhalo abundance matching (SHAM)

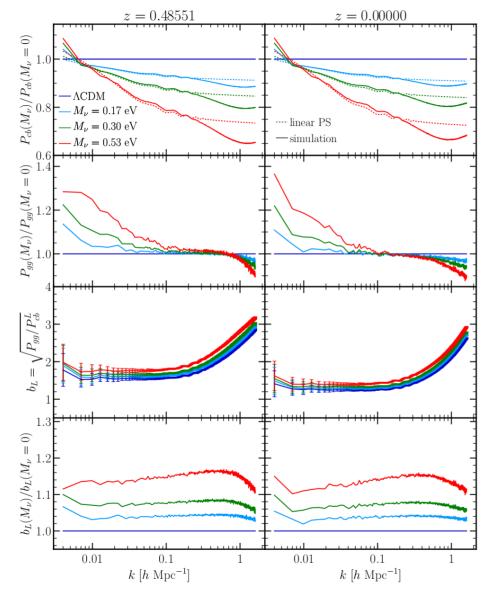
• Matching according to $v_{\max} = \max(\sqrt{GM(\langle r)/r})$

• DEMNUni sims (C. Carbone) $z \simeq \{0.0, 0.5, 1.0, 1.5, 2.0\}$ Carbone et al (2016), Castorina et al (2015), presented today by Andrea Pezzotta

•
$$\bar{n} = \{10^{-3}, 3 \times 10^{-4}, 10^{-4}\} h^3 \text{ Mpc}^{-3}$$

Linear bias model

 $P_g(k) = b_1^2 P(k)$

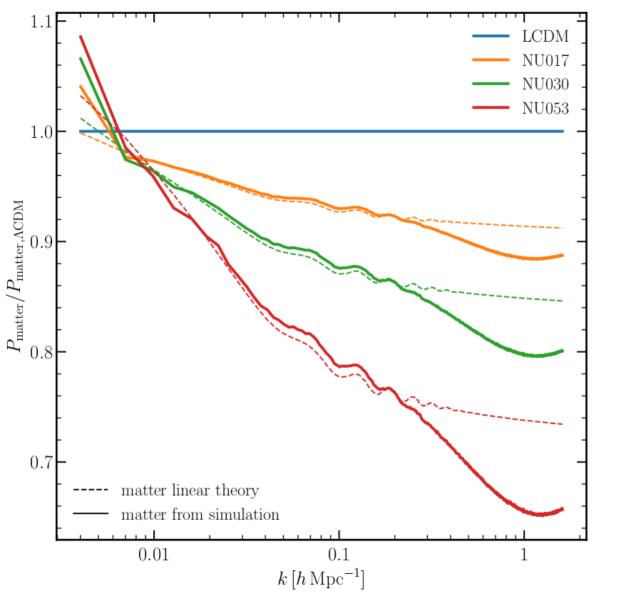


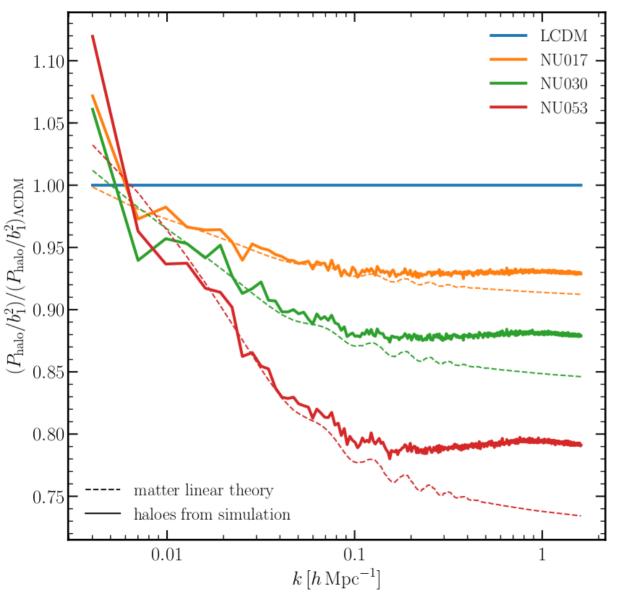
Massive / massless case for cold matter

Massive / massless case for galaxies

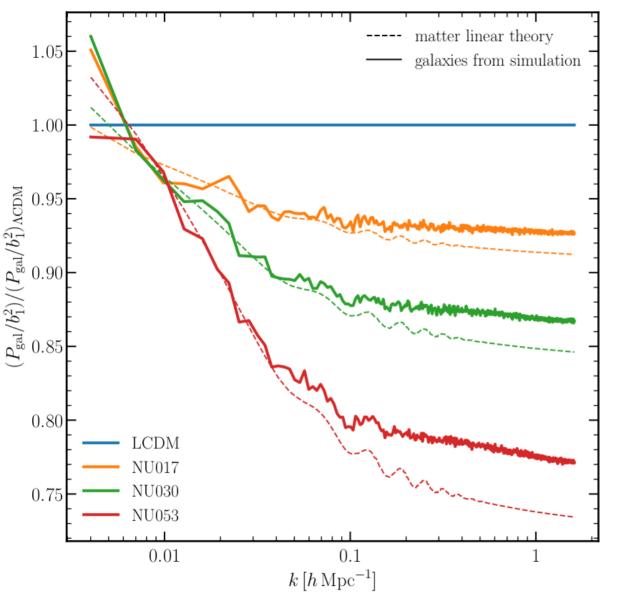
Linear bias (gaussian errors)

Massive / massless case for the linear bias

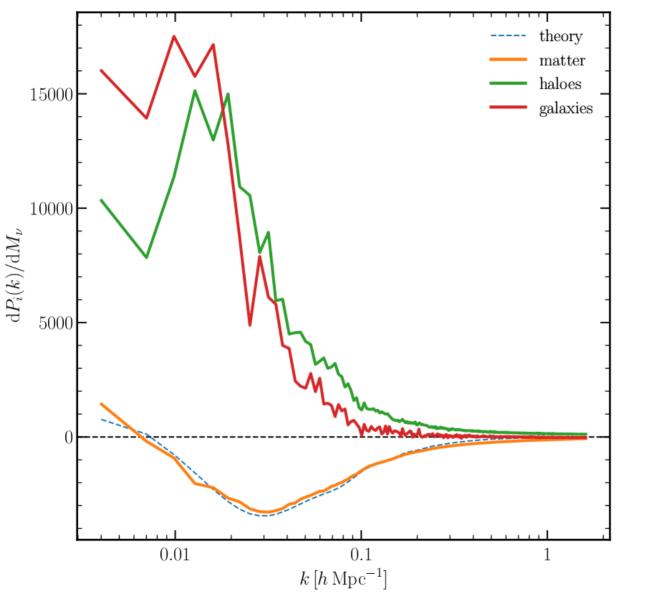




Haloes

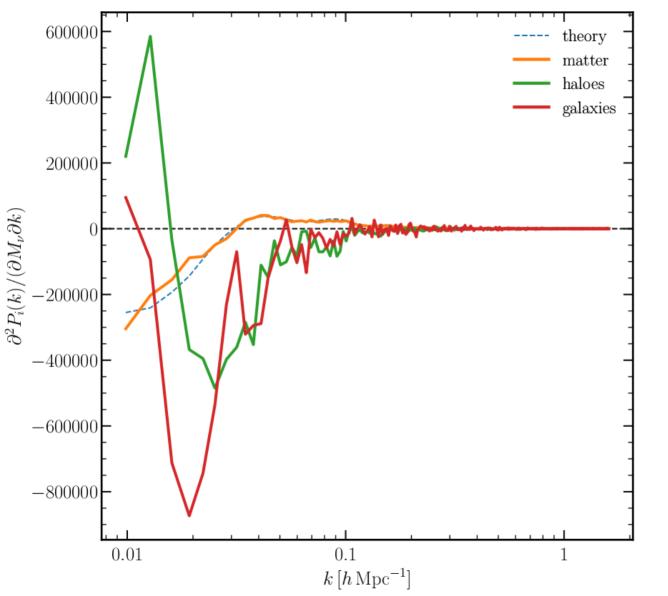


Matter



Derivatives

wrt neutrino mass



Derivatives

wrt neutrino mass and scale

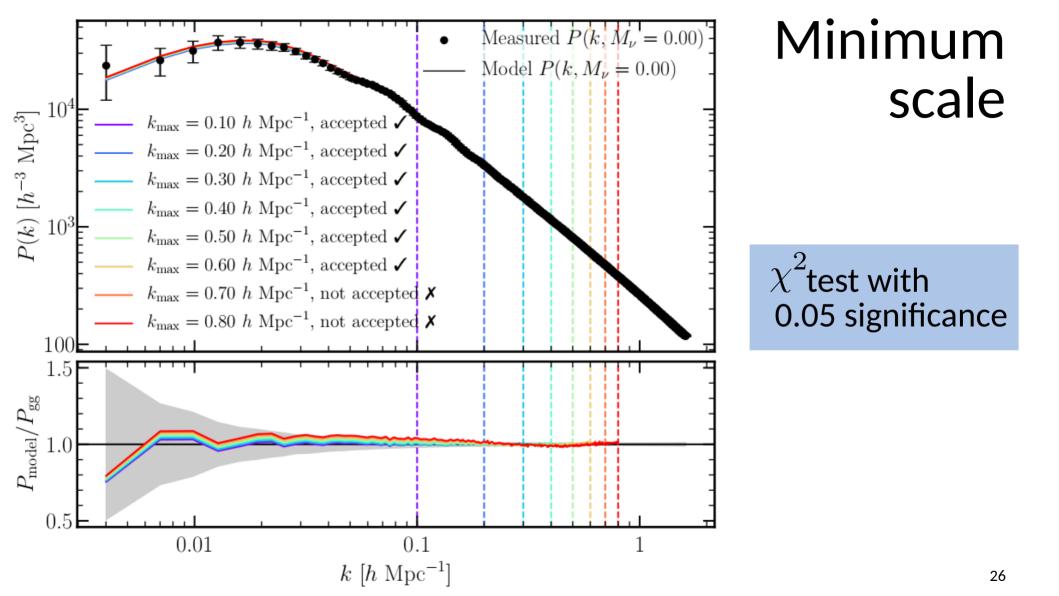
Nonlocal, nonlinear model

$$\begin{split} P_{\mathrm{g},\delta\delta}(k) &= b_1^2 P_{\delta\delta}(k) + 2b_1 b_2 P_{b_2,\delta}(k) + 2b_1 b_{s^2} P_{b_{s^2},\delta}(k) \\ &+ 2b_1 b_{3\mathrm{nl}} \sigma_3^2(k) P^{\mathrm{lin}}(k) + b_2^2 P_{b_2^2}(k) \\ &+ 2b_2 b_{s^2} P_{b_2 s^2}(k) + b_{s^2}^2 P_{b_{s^2}^2}(k) \end{split} \text{McDonald \& Roy (2009)}$$

Nonlocal, nonlinear: free parameters

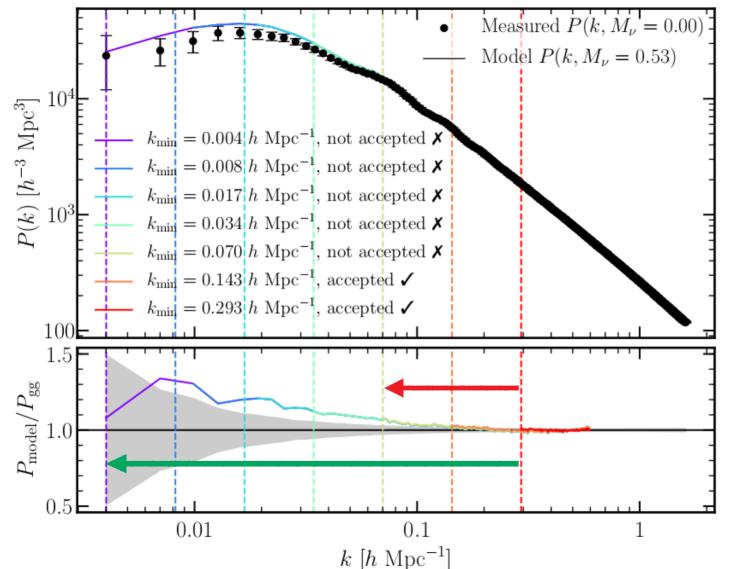
- In principle, 4 free parameters $b_1, b_2, b_{s^2}, b_{3nl}$
- If bias is local in lagrangian coordinates
 - Chan et al, 2012: $b_{s^2} = -\frac{4}{7}(b_1 1)$
 - Beutler et al, 2014; Saito et al, 2014: $b_{3nl} = -\frac{32}{315}(b_1 1)$
- Or even relaxing this assumption

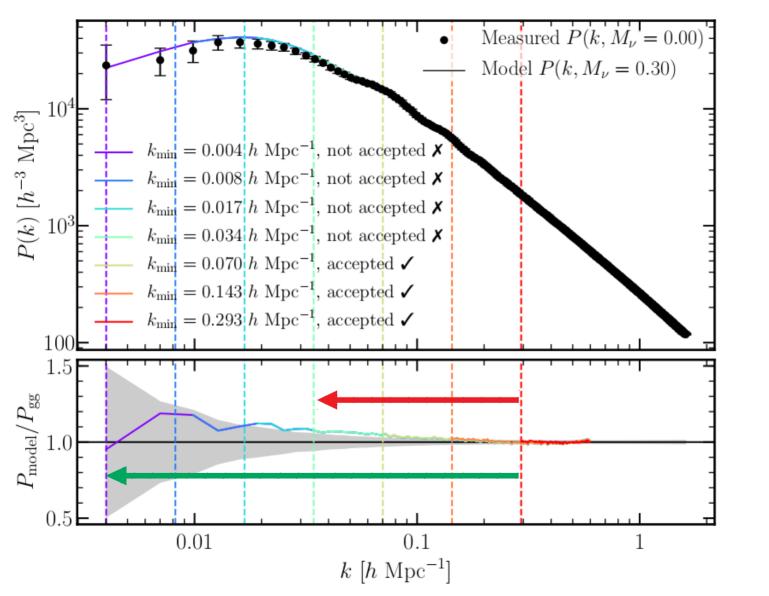
 - Chan et al, 2012: $b_{s^2} = -\frac{4}{7}(b_1 1.43)$ Bel at al, 2015: $b_{s^2} = -\frac{4}{7}(b_1 0.8)$



test cannot reject wrong hypothesis

model can distinguish different neutrino mass

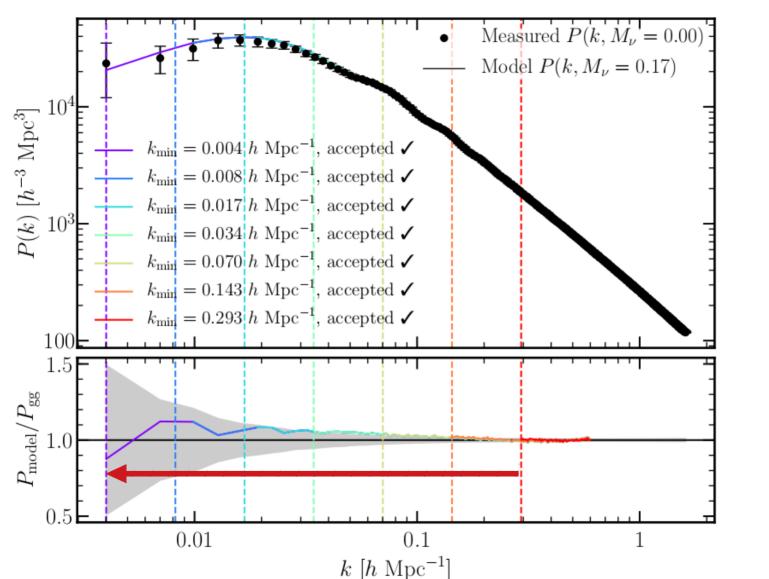




Maximum scale

test cannot reject wrong hypothesis

model can distinguish different neutrino mass



Maximum scale

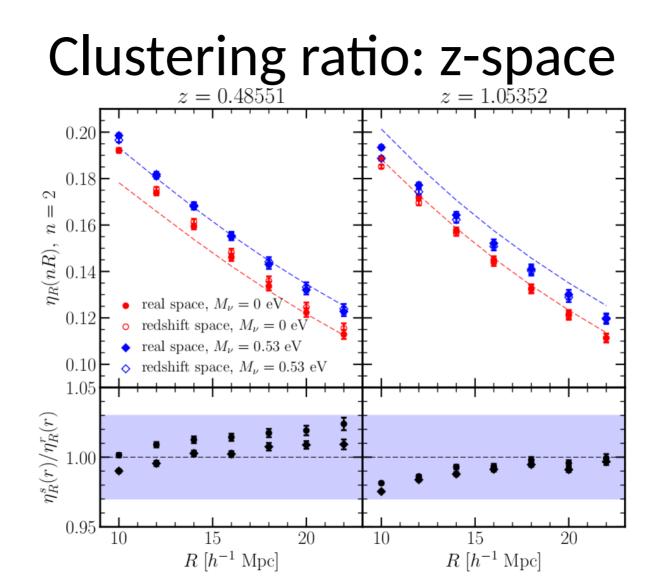
test cannot reject wrong hypothesis

model can distinguish different neutrino mass

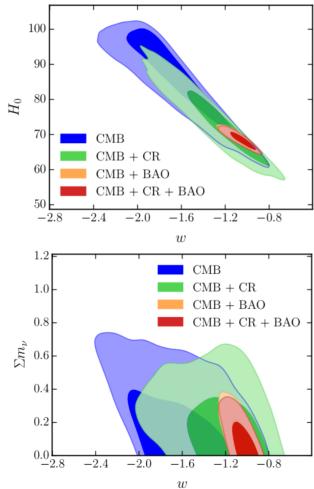
Conclusions

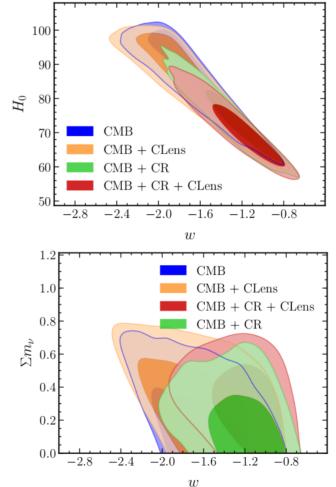
- Extended clustering ratio to cosmologies that include massive neutrinos
- Using SDSS data, 12% improvement on Ω_{cdm} constraints, but not yet competitive for M_{ν}
- Forecasts for Euclid show 40% improvement for Ω_{cdm} and 14% improvement for M_{ν}
- Galaxy power spectrum in the presence of neutrinos with SHAM technique
- Neutrino mass parameter **completely degenerate** if only small scales are included in the fit
- Window of scales where this degeneracy is broken
- MCMC approach to assess the effect on **cosmological parameter constraints**
- **Realistic** galaxies (impact of SHAM flavour, different galaxy populations...)

Backup slides



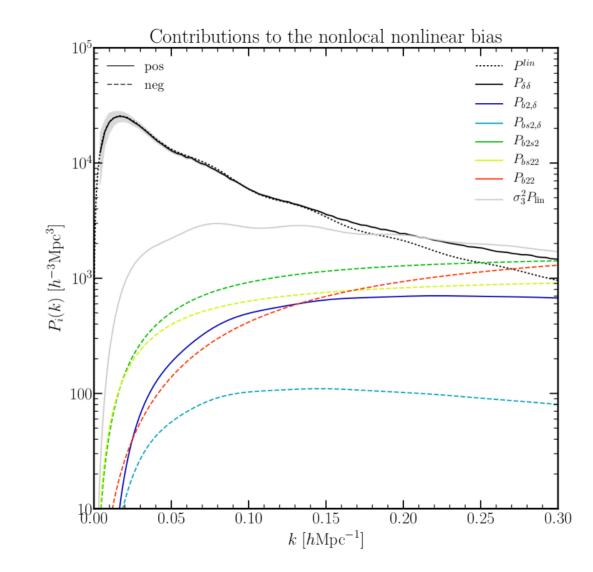
Clustering ratio: CR + BOSS/CLens





Nonlocal, nonlinear: convolution terms

$$\begin{split} P_{b_{2}\delta}(k) &= \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} P^{l}(q) P^{l}(|\boldsymbol{k}-\boldsymbol{q}|) \mathcal{F}_{2}^{\mathrm{SPT}}(\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q}), \\ P_{b_{s}^{2}\delta}(k) &= \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} P^{l}(q) P^{l}(|\boldsymbol{k}-\boldsymbol{q}|) \mathcal{F}_{2}^{\mathrm{SPT}}(\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q}) S_{2}(\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q}), \\ P_{b_{2}s^{2}}(k) &= -\frac{1}{2} \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} P^{l}(q) \left[\frac{2}{3} P^{l}(q) - P^{l}(|\boldsymbol{k}-\boldsymbol{q}|) S_{2}(\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q})\right], \\ P_{b_{s}^{2}}(k) &= -\frac{1}{2} \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} P^{l}(q) \left[\frac{4}{9} P^{l}(q) - P^{l}(|\boldsymbol{k}-\boldsymbol{q}|) S_{2}^{2}(\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q})\right], \\ P_{b_{2}^{2}}(k) &= -\frac{1}{2} \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} P^{l}(q) \left[P^{l}(q) - P^{l}(|\boldsymbol{k}-\boldsymbol{q}|)\right], \\ \sigma_{3}^{2}(k) &= \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} P^{l}(q) \left[\frac{5}{6} + \frac{15}{8} S_{2}(\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q}) S_{2}(-\boldsymbol{q},\boldsymbol{k}) - \frac{5}{4} S_{2}(\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q})\right] \end{split}$$



Sexten, July 5th 18 35