# Mean density estimation for Accurate power spectrum estimation

# Jun Koda

Università Degli Studi Roma Tre

Sesto, 5 July 2018

## **FKP** estimator

FKP: Feldmann, Kaiser and Peacock 1994, ApJ 426 23

**FKP** estimator

$$F(\boldsymbol{x}) = w(\boldsymbol{x}) \left[ n_{\text{data}}(\boldsymbol{x}) - \alpha n_{\text{rand}}(\boldsymbol{x}) \right]$$

 $\alpha$  = data/random ratio

#### Minimum variance weight

$$w_{\text{FKP}}(\boldsymbol{x}) = \frac{1}{1 + \bar{n}(\boldsymbol{x})P_{est}}$$

which minimises the statistical error

$$\sigma_P(k)/P(k)$$
 (monopole)

### **FKP** estimator

FKP: Feldmann, Kaiser and Peacock 1994, ApJ 426 23

$$\tilde{P}(\boldsymbol{k}) = \frac{1}{\mathcal{N}} F(\boldsymbol{k}) F(\boldsymbol{k})^* - \mathcal{S}$$

The estimated power spectrum is related to the true power spectrum via window function convolution

$$\tilde{P}(\boldsymbol{k}) = \int \frac{d^3k}{(2\pi)^3} |\hat{W}(\boldsymbol{k} - \boldsymbol{k}')|^2 P(\boldsymbol{k}')$$
$$W(\boldsymbol{x}) = w(\boldsymbol{x})\bar{n}(\boldsymbol{x})$$

### Mean density for the FKP weight

FKP weight 
$$w_{\mathrm{FKP}}(\boldsymbol{x}) = \frac{1}{1 + \bar{n}(\boldsymbol{x})P_{est}}$$

ensemble average, or the density without clustering

$$\bar{n}(\boldsymbol{x}) = \langle n_g(\boldsymbol{x}) \rangle$$

usually,

$$\bar{n}(\boldsymbol{x}) = \bar{n}(z) \times f(RA, Dec)$$

In Euclid, we cannot make such decomposition Need to estimate density in **3D** from random catalogue

## **Density estimation**

#### Kernel density estimation

- Fixed kernel
  - PM simulation
  - P(k) estimation
- Adaptive kernel
  - SPH hydro simulation

#### **Delaunay tessellation**

#### **Statistical - systematic tradeoff**

statistical fluctuation vs bias (over smoothing)



# How does the statistical/systematic error in mean density affect *P(k)* estimation?

$$w_{\text{FKP}}(\boldsymbol{x}) = \frac{1}{1 + \bar{n}(\boldsymbol{x})P_{est}}$$

1. Should not contribute to systematic error in *P(k)* 

everything is encoded in the window function

2. Increases the statistical error in P(k)

because the weight is suboptimal

but how significantly?

# Using the FFT grid for nbar



Power spectrum multipoles

# Using the FFT grid for nbar

**Numbers** 

 $\Delta x \sim 2\pi h^{-1} \text{Mpc}$   $k_{Nq} = \frac{\pi}{\Delta x} \sim 0.5 h \text{Mpc}^{-1}$   $\bar{n} \sim 10^{-4} - 10^{-3} [h^{-1} \text{Mpc}]^{-3}$   $\alpha^{-1} = 50 \qquad \text{[random/data]}$   $N_{rand} \text{ in cell} = 1 - 10 \text{ particles per cell}$ 



## nbar error effect on window function



When the fluctuation is small,  $\operatorname{Var}[\tilde{w}_a] \ll \langle w_a \rangle^2$ , the amplitude of the window function is,

$$\frac{\operatorname{Var}[\tilde{w}_a]}{\langle \tilde{w}_a \rangle^2} V_{cell} = \left[ \frac{\bar{n} P_{est}}{1 + \bar{n} P_{est}} \right] \bar{n}_{dens-est}^{-1}, \tag{35}$$

## Statistical fluctuation term vs survey window function

Geometry: Flagship-like octant shell 1.7 < z < 1.8,  $n(z) = 4 \times 10^{-4}$ 





#### density error adds negligible mode mixing



(2.3.2)



#### only 2% increase in statistical error for fiducial setup

| $\alpha_{dens-est}^{-1}$ | precision ratio | N <sub>density</sub> | precision ratio |
|--------------------------|-----------------|----------------------|-----------------|
| 10                       | 1.12            | 512                  | 1.022           |
| 20                       | 1.057           | 256                  | 1.0027          |
| 40                       | 1.028           | 128                  | 1.00034         |
| 50                       | 1.022           | 64                   | 1.000043        |
|                          |                 |                      |                 |



| $\alpha_{dens-est}^{-1}$ | precision ratio | $N_{density}$ | precision ratio |
|--------------------------|-----------------|---------------|-----------------|
| 10                       | 1.12            | 512           | 1.022           |
| 20                       | 1.057           | 256           | 1.0027          |
| 40                       | 1.028           | 128           | 1.00034         |
| 50                       | 1.022           | 64            | 1.000043        |

## **Exercise with VIPERS COLA mocks**





W1, high z bin (0.9 < z < 1.2)

# **Exercise with VIPERS COLA mocks**

angular modulation of the mean number density

Spectroscopic Success Rate (SSR)





\* quadrant dependence and redshift dependence is applied to the randoms

# Window function with estimated nbar





diagonal error in P(k) from 1000 mocks



 $w_{\text{FKP}}(\boldsymbol{x}) = \frac{1}{1 + \bar{n}(\boldsymbol{x})P_{est}}$  True  $\bar{n}(\boldsymbol{z})$  is used here

P(k) statistical error with estimated nbar



## estimated mean density using TSC



Systematic error from coarse grid / large kernel is not affecting the P(k) error

# Summary

- Euclid requires 3D density estimation for FKP estimator;
- scatter in density have negligible impact on window function; no significant additional mode mixing;
- scatter in density may or may not increase the *P(k)* error
  - could be a factor of 2 in *P(k)* error [VIPERS mock]
  - smooth the density field if necessary; systematic error (over smoothing) in mean density seems harmless for *P(k)* error
  - Using FFT grid seems for mean density is fine for Euclid, but worth checking with more realistic mocks