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Mean density estimation for



FKP estimator
 FKP: Feldmann, Kaiser and Peacock 1994, ApJ 426 23

FKP estimator

F (x) = w(x) [ndata(x)� ↵nrand(x)]

wFKP(x) =
1

1 + n̄(x)Pest

Minimum variance weight

which minimises the statistical error

�P (k)/P (k)

α = data/random ratio

(monopole)



FKP estimator
 FKP: Feldmann, Kaiser and Peacock 1994, ApJ 426 23

P̃ (k) =
1

N F (k)F (k)⇤ � S

P̃ (k) =

Z
d3k

(2⇡)3
|Ŵ (k � k

0)|2P (k0)

W (x) = w(x)n̄(x)

The estimated power spectrum is related to the true power spectrum 

via window function convolution



wFKP(x) =
1

1 + n̄(x)Pest
FKP weight

Mean density for the FKP weight

n̄(x) = hng(x)i
ensemble average, or the density without clustering 

usually,

n̄(x) = n̄(z)⇥ f(RA,Dec)

In Euclid, we cannot make such decomposition

Need to estimate density in 3D from random catalogue



Density estimation

Kernel density estimation


• Fixed kernel

‣ PM simulation

‣ P(k) estimation


• Adaptive kernel

‣ SPH hydro simulation


Delaunay tessellation

Kernel density estimation

en.w
ikipedia.org/w

iki/Kernel_density_estim
ation

Statistical - systematic tradeoff

statistical fluctuation vs bias (over smoothing)



1. Should not contribute to systematic error in P(k)


everything is encoded in the window function


2. Increases the statistical error in P(k)


because the weight is suboptimal


but how significantly?

How does the statistical/systematic error in
mean density affect P(k) estimation?

wFKP(x) =
1

1 + n̄(x)Pest



Using the FFT grid for nbar
Particles (galaxies/randoms) Density grid

FFT

P`(k)
Power spectrum multipoles

Mass assignment

F (k)
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kNq =

⇡

�x
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�3
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�3

↵

�1
= 50 [random/data]

Nrand in cell = 1� 10 particles per cell

Numbers

Using the FFT grid for nbar



nbar error effect on window function

change grid sizechange # random
Periodic box: true window function is δK at k = 0

The survey window function is,
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and its Fourier transform is,
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Note that the window function is n̄w̃(x), not ñw̃(x); ñ
a

is the density used to compute the
FKP weight; the density determines the survey window function is n̄ (equation 8).

The ensemble mean window function is:

⌦
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where we use,
hw̃
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w̃
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and equations (20–23). The sum of exponentials in the second term is a Kronecker delta, which
only contributes to k = 0.
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When the fluctuation is small, Var[w̃
a

] ⌧ hw
a

i2, the amplitude of the window function is,
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hw̃
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where n̄
dens�est

= N

cell

/V

cell

is the number density of randoms used for mean density estimation.
The width of the kernel scale as,

⇡/✏ = k

Nq,density

=
⇡

L

box

N

density

. (36)

These amplitude and the width of the window function was what we wanted to present in this
section.
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Geometry: Flagship-like octant shell 1.7 < z < 1.8, n(z) = 4 × 10-4

Statistical fluctuation term vs survey window function



P̃ (k) =

Z
d3k

(2⇡)3
|Ŵ (k � k

0)|2P (k0)

W (x) = w(x)n̄(x)

density error adds negligible mode mixing



Figure 3: The integral of Figure 2,
R
k2
k1 |Ŵ |2d3k/(2⇡)3 for k2 � k1 = 0.1hMpc�1.

This shows the contribution to the convolution integral (equation 9). The statistical error have
negligible e↵ect on the window function near the origin k  0.1hMpc�1, and relative change
in the window function is comparable (⇠ 40%) for k > 0.1hMpc�1, but the magnitude of the
integrated window function is sub per cent. This means that the contribution to the integral,

P̃ (k) =

Z
d

3
k

0

(2⇡)3
|W (k � k

0|2P (k0) (11)

from |k� k

0| > 0.1hMpc�1 is negligible if P (k0)  P (k), which means that the statistical error
in mean density adds negligible contribution to P̃ from higher wavelengths. On the other hand,
the statistical error may add more power to higher wavenumber k from lower wavenumber k

0,
since P (k0) � P (k), for example k ⇠ Mpc�1 and k

0 ⇠ 0.1Mpc�1.

2.2.2 Power spectrum

Figure 4 shows the convolved window function (equation 9) with and without mean density
error.

2.2.3 Power spectrum variance

The standard deviation of the power spectrum, �
P

is,
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characterises the precision of the power spectrum measurement. In Table 1, we list the ratio,
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Figure 4: The convolved power spectrum P̃ and its statisical error �P̃ = (P̃ + n̄

�1)/
p
N

modes

.

Table 1: The ratio of the precision �

P

/P for the estimated n̄ to the true n̄. For example, the
precision ratio 1.12 means that the statitical error of the power spectrum, �

P

/P , increases by
12 % compared to the power spectrum estimated with the true n̄. N

density

= 512 for the left
columns and ↵

�1
dens�est

= 50 for the right columns.

↵

�1
dens�est

precision ratio N

density

precision ratio
10 1.12 512 1.022
20 1.057 256 1.0027
40 1.028 128 1.00034
50 1.022 64 1.000043

The choice of ↵�1
dens�est

= 50, N
density

= 512 has the ratio 1.022, which means that the statistical
error of the power spectrum only increase by 2.2%. The precision impoves exponentially by using
coarser grid.

2.2.4 Conclusion

We compare the survey window function for a Euclid-like volume with and without statistical
error in mean-density estimation and conclude that the statistical error using a grid with the
TSC mass assignment and parameters k

Nq

= 0.47(N
density

= 512) and random catalogue size
↵

�1 = 50 introduces negligible (* more quantitatively? *) change to the survey window function,
therefore, using the random grid of k

Nq

⇡ 0.5hMpc�1 is su�cient for mean density estimation
in the power spectrum estimator. We encourage the readers, however, to test the relative
amplitude of the window function in the box to the survey window function, as we presented in
this report, for their power spectrum estimation configuration; especially if they use larger k

Nq

(the ’noise’ window function decreases slower with k) or wider redshift bin (the survey window
function decreases more rapidly with k).

6

only 2% increase in statistical error for fiducial setup

nbar error effect on P(k) variance
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Lognormal mocks with Euclid Flagship-like octant
redshift slice 1.7 < z < 1.8, no angular mask, 1000 realisations

Figure 4: The convolved power spectrum P̃ and its statisical error �P̃ = (P̃ + n̄
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This shows the contribution to the convolution integral (equation 9). The statistical error have
negligible e↵ect on the window function near the origin k  0.1hMpc�1, and relative change
in the window function is comparable (⇠ 40%) for k > 0.1hMpc�1, but the magnitude of the
integrated window function is sub per cent. This means that the contribution to the integral,
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from |k� k

0| > 0.1hMpc�1 is negligible if P (k0)  P (k), which means that the statistical error
in mean density adds negligible contribution to P̃ from higher wavelengths. On the other hand,
the statistical error may add more power to higher wavenumber k from lower wavenumber k

0,
since P (k0) � P (k), for example k ⇠ Mpc�1 and k

0 ⇠ 0.1Mpc�1.

2.2.2 Power spectrum

Figure 4 shows the convolved window function (equation 9) with and without mean density
error.

2.2.3 Power spectrum variance

The standard deviation of the power spectrum, �
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is,
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Pest = 4000 [(h�1Mpc)3]

Ngrid = 256 () �x = 13.3h�1Mpc



Exercise with VIPERS COLA mocks

W1, high z bin (0.9 < z < 1.2)

n̄(z)



Exercise with VIPERS COLA mocks

angular modulation of the mean number density

Spectroscopic Success Rate (SSR)

SSR

* quadrant dependence and redshift dependence is applied to the randoms



Window function with estimated nbar



P(k) statistical error with / without FKP weights

wFKP(x) =
1

1 + n̄(x)Pest

diagonal error in P(k) from 1000 mocks

True n̄(z) is used here



P(k) statistical error with estimated nbar



estimated mean density using TSC

Systematic error from coarse grid / large kernel is not affecting the P(k) error 



• Euclid requires 3D density estimation for FKP estimator;


• scatter in density have negligible impact on window function; no 
significant additional mode mixing;


• scatter in density may or may not increase the P(k) error


• could be a factor of 2 in P(k) error [VIPERS mock]


• smooth the density field if necessary; systematic error (over 
smoothing) in mean density seems harmless for P(k) error


• Using FFT grid seems for mean density is fine for Euclid, but 
worth checking with more realistic mocks 

Summary


