Simulating **Euclid S**pectroscopic Telescope bservations

INAF

with Dida Markovic, Sylvain de la Torre and the galaxy clustering end-to-end group

Ben Granett ben.granett@brera.inaf.it

> Paving the way... Sesto, 5 July 2018

Euclid survey instruments

- Near-IR spectrograph (NISP)
 - Pixel scale 0.3 arcsec/pixel Ο
 - Slitless spectrograph Ο
 - Grism dispersion 13.4 A/pixel Ο
- Visible imager (VIS), not presented here

Grism wheel

Red 0,90,180 Blue 0

A panchromatic view

*NISP sim does not include cosmic rays.

4

Spectroscopic surveys

• Wide

- ~ 15 000 sq deg
- Imaging magnitude limit: H ~ 24
- Emission line flux limit: ~ 2 x 10^{-16} erg/s/cm²
- 4 passes
- 3 red grism orientations

• Deep

- ~ **40 sq deg**
- H ~ 26
- \circ Flux ~ 0.2 x 10⁻¹⁶ erg/s/cm²
- >> 4 passes
- Red and blue grisms

Data systematics

- Foregrounds
 - o Zodi
 - Straylight
 - Extinction
- Contamination
 - Spectra overlaps
 - Cosmic rays
 - Persistence
- Redshift measurement
 - Systematic misidentification
 - Spurious detection rate
 - Random error
 - Template bias

- Calibration error
 - Spectrophotometry
 - Wavelengths

Simulation tools

- Pixel simulations
 - IModel (Garilli et al)
 - TIPS (Zoubian et al)
- Catalog level (bypasses)
 - Pypelid (Granett, Markovic et al)

★ We are developing pypelid to scale up to simulations the size of the Euclid wide survey

0

0

0

Ο

8

Inputs

- Flagship galaxy properties
 - \circ RA, Dec, z
 - o mag J, H
 - Flux Ha, Hb, NII, SII, OIII, OII
 - Bulge, disk: scale, fraction, axis ratio
 - Foregrounds
 - Stars
 - o Zodi
 - Out-field straylight
 - Milky way extinction

Signal and noise

Signal and noise

- Emission line signal $S = A_{surf} t_{exp} q \int T(\lambda) f_{\lambda}(\lambda) \ 10^{-0.4A(\lambda)} \frac{\lambda}{hc} d\lambda$
- Noise

$$\sigma^2 = t_{exp} n_{dark} + \sigma^2_{read} + \sum_i \sigma^2_{diffuse,i}$$

Detection significance

- Simulate noisy emission line spectrum
 - Point-spread function
 - Disk & bulge size
 - Line broadening
 - No continuum
- Do a template fit on the 1D spectrum
- Template-fit amplitude defines SNR:

$$a = \frac{\sum d\sigma^{-2}t}{\sum t\sigma^{-2}t}$$

Spurious sources - false detection rate

- The SNR cut will set the false-detection rate
- We can model the distribution by running noise-only spectra
- Model the SNR null distribution:
 - At fixed redshift: Chi2 with one deg of freedom, or
 - Varying redshift: Gumbel distribution

Galaxies Randoms 8x Systematics: tiling pattern -20.0-20.2Dec -20.4-20.6 -20.8-21.08.0 8.8 8.2 9.0 8.6 8.4 RA

Galaxies

Randoms 8x

Systematics: tiling pattern-

Systematics: tiling pattern

Uniform randoms (not expected to work)

Lines of the same color show different shuffling realizations (shot noise)

Systematics: contamination

- Overlapping spectra contribute to the noise
- Is this an important exclusion effect like SDSS fiber collisions or VIMOS slit constraints?

Systematics: contamination

$$SNR = \frac{S}{\sqrt{S + C + N_{sky}}}$$

- We are in the $N_{sky} > C$ regime
 The exception is bright galaxies at low
- The exception is bright galaxies at low redshift

Contamination model

[Based on PROFESS by S. de la Torre]

Run configurations

- Flagship 1.5.2
- Selection: H < 24
- 307 pointings ~ 175 sqr deg
- Foregrounds:
 - o Zodi
 - Out-field stray light
 - Milky Way extinction
- Pypelid run with contamination on and off
- Detection threshold 5 sigma

Contamination tests: completeness

Contamination tests: correlation function

Discussion points - contamination

- Continuum contamination will come from foreground bright galaxies (stars) H<20
- Uncorrelated with target sample 0.9<z<1.8
- What about contamination with line features?
 - This could come from sources at any redshift
 - Depends on OU-SIR decontamination algorithm
 - Insufficient orientations could leave residual contamination features in stacked spectra.

Systematics - redshift measurement error

- Pypelid models the extraction process and runs a template fitter to get a redshift measurement with error
- Includes
 - Spurious line detection
 - Line misidentification
 - Estimation of significance
 - Estimation of the false detection rate by running noise-only spectra
- Not implemented (yet)
 - Redshift priors (eg magnitude, color or size)
 - Wavelength calibration error model

Line misidentification

- Contamination rates estimated from Flagship populations
- Ultimately to be calibrated from the Deep survey

Line misidentification

27 Sesto - 5 July 2018 - ben.granett@brera.inaf.it

Random redshift error - RSD

Discussion points - redshift error

- Line misidentification rates will depend strongly on the priors
 - Magnitude, color, size, ...
 - Line misidentification can be put into the model
- Best fit parameters can change with redshift error, even though we know how to model it perfectly...
 - Information is lost
 - Watch for degeneracies between redshift error and other RSD model parameters
- Correlations between redshift error, galaxy type and environment can be troublesome
 - But we have not seen a strong effect in Flagship

Pypelid performance

- Exposures processed in parallel with MPI
 - There are remaining efficiency issues
- ~100 core-days/survey

SESTO summary

- Current pixel-level simulations are limited to a few pointings
- We are developing algorithms to bypass pixels and model survey systematics at the catalog level
- pypelid is our fast and modular survey simulator
- With the Flagship mock we've started looking at systematics for Euclid Wide clustering analyses
 - Tiling pattern and visibility mask
 - Contamination by continuum sources
 - Random and systematic redshift error

More paving to come!