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Shifted fields

I There are two situations in cosmology where the statistics of
“shifted” fields are of interest:

I Redshift-space distortions.
I Reconstruction (for BAO).

I Many aspects of these problems are common, allowing a
unified treatment.

I While many of the results below will be quite general, where
necessary I will illustrate it with LPT+EFT.



Background: LPT

I To fix notation, recall a fluid element (or DM particle) initially
at q at tinit moves to x(q, t) = q + Ψ(q, t) with
Ψ̈ +HΨ̇ = −∇Φ(q + Ψ).

I We necessary we shall solve for Ψ perturbatively, including
contributions from unmodeled small-scale physics using
counterterms.

I The 1st order solution is the Zeldovich approximation.

I Given Ψ, the Eulerian density is

1 + δ(x) =

∫
d3q δ(D) [x− q−Ψ(q)]

or

δ(k) =

∫
d3q e ik·q

(
e ik·Ψ(q) − 1

)
Including Lagrangian bias is straightforward, but due to time

constraints I will focus on the matter to illustrate the principles.



Background: shifted fields

I For RSD, shift arises due to physics: s = x + n̂ (v · n̂/H).
I For reconstruction shift is applied by analyst, and is some

functional of the observed (biased, non-linear, redshift-space)
density.

I For illustration I will use the ‘traditional’ algorithm involving
the Zeldovich approximation.

I The generalization to other algorithms is under study.

I Aside from the source of the shift, the modeling of the shifted
fields presents many common elements:

I Introduce a ‘shift’ field χ which displaces objects from q + Ψ
to q + Ψ + χ.

I To keep notation easy, let χ = χ(x).



Shifting I

I The density field is

(2π)3δ(D) (k) + δχ(k) =

∫
d3q exp [ik · {q + Ψ + χ}]

=

∫
d3x [1 + δ(x)] exp [ik · {x + χ}]

I This is the FT of 1 + δ(x) times a phase, exp[ik · χ].
I Shift = phase

I Note if you go through Lagrangian coordinates you don’t need
to assume a single-stream, or 1-to-1 approximation.



Shifting II

I The 2-point function of δχ(k) will have 1 + δ(x1) times
1 + δ(x2) and an exponential of ∆χ = χ(x2)− χ(x1).

I Define the moment generating function of the shifted fields

1 +M(J , r) =
〈

[1 + δ(x1)] [1 + δ(x2)] e iJ ·∆χ
〉

where r = x2 − x1.

I Note M and Ξ depend only upon r!

I J−derivatives of M (at J = 0) give density-weighted
moments of ∆χ:

Ξi1,...,in(~r) =
〈(

1 + δ(~x1)
)(

1 + δ(~x2)
)
∆χi1 . . .∆χin

〉



Shifting III

I If we FT M on r we have (up to a δ(D)):

M̃(J , k) =

∫
d3r e ik·r

〈
[1 + δ(x1)] [1 + δ(x2)] e iJ ·∆χ

〉
I Immediately we see that the power spectrum is

P(k) = M̃(J = k, k) =

∫
d3r e ik·rM(J = k, r)

I This relation holds beyond perturbation theory!

I To get ξ we need to do another FT.

Note we need an extra FT to get ξ regardless of whether we start
from M or M̃.



Four methods

There are 4 routes forward, which have been pursued extensively in
the literature but can be viewed within this same language:

1. Direct Lagrangian approach
I Transform M to Lagrangian coordinates and use cumulant

theorem.

2. Moment expansion approach.
I Expand M and evaluate moments using SPT or use DF

approach.

3. Streaming model(s).
I Transform M to cumulant generating function, Z. There are

two inequivalent streaming models.

4. Smoothing kernel (Scoccimarro).
I Multiply out (1 + δ)(1 + δ)e··· and apply cumulant theorem to

each contribution to M.
I Forms basis of “TNS” method, which further expands the

exponential and approximates the kernel as a Gaussian.



Four methods

I Labels and classes are primarily historical.

I All methods would be identical if carried to the same order
with the same approximations.

I At finite order, they resum various things and some may be
better for some purposes/models than others.

I It is worth stressing that the streaming model is a truncation
of the cumulant expansion, not a phenomenological model.

I All ‘models’ are valid beyond shell crossing – it is when we do
‘traditional’ PT expansions that we lose that validity (EFT
c.t.).

I This view provides a nice link between Eulerian moments and
cumulants and Lagrangian dynamics, which can be useful.



Direct Lagrangian approach I: RSD

Transform M to Lagrangian coordinates and use cumulant
theorem.
For example, for RSD:

Ps(k) =

∫
d3q e ik·q

〈
[1 + δ(q1)] [1 + δ(q2)]

× exp [ik · (∆Ψ + ∆v)]

〉
This leads to the formulae for iPT or CLPT and their extensions.

For illustration consider the Zeldovich approximation – 1st order
LPT – for the matter, though nothing in the formalism requires

these simplifications.



Direct Lagrangian approach II: RSD

For the matter everything depends upon the Lagrangian 2-point
function

A`m(q) = 〈∆`∆m〉 with ∆i = Ψi (~q)−Ψi (~0)

which for Zeldovich can be expressed in terms of integrals over the
linear theory power spectrum. Writing

Aij(q) = X (q)δij + Y (q)q̂i q̂j

= 2
3δ

K
ij [J0(0)− J0(q)] + 2

(
q̂i q̂j − 1

3δ
K
ij

)
J2(q)

we have

J0(q) =

∫ ∞
0

dk

2π2
PL(k)j0(kq) and J2(q) =

∫ ∞
0

dk

2π2
PL(k)j2(kq)



Direct Lagrangian approach III: RSD

The Zeldovich approximation power spectrum is then

Ps(k) =

∫
d3q exp

[
−1

2
kikjAij(q)

]
or

Ps(k , ν) = 4π
∞∑
n=0

∫
q2 dq Ks

n(k, ν, q)e−(1/2)k2[X+Y ]

(
kY

q

)n

jn(kq)

where K has an unenlightening (but very cool!) expression in terms
of hypergeometric functions. First calculation of Pred

Zel we know of!



Zeldovich RSD power spectrum (Vlah special)

Ks
n

(
k, q, ν

)
=
(

1 + f ν2
)2n

e−(1/2)f ν2k2
[

(2+f )X (q)+(2+f ν2)Y (q)
]

× K s
n

(
ν,−1

2a1k
2Y
)

with

K s
n (ν, x) =

∞∑
`=0

(−1)`F`(ν, x)U(−`, n − `+ 1,−x),

F`(ν, x) =
∑̀
m=0

(−1)m4`−mΓ(m + 1
2 )

π1/2Γ(m + 1)Γ(1 + 2m − `)Γ(2`− 2m + 1)

(
a0

a1

)m

×M
(
`− 2m; `−m + 1

2 ; x
)
M

(
m + 1

2 ;m + 1;
a0

a1
x

)
,

with a0(ν) = f 2ν2(1− ν2), a1(ν) =
(

1 + f ν2
)2

and M(a, b, z)

and U(a, b, z) the confluent hypergeometric function of the 1st

(Kummer’s) and 2nd (Tricomi’s) kind respectively.



Cumulant approach: two streaming models

Expand Z = ln[1 +M] in powers of J , in configuration space:

Zχ( ~J, ~r) =
∞∑
n=0

in

n!
Ji1 . . . JinC

(n)
i1...in

(~r),

The first few cumulants are

C(0)(~r) = ln
[
1 + ξ(~r)

]
,

C(1)
i (~r) =

Ξi (~r)

1 + ξ(~r)
=
〈(1 + δ)(1 + δ)∆χi 〉

1 + ξ
= v12 , etc.

Plugging in to get M and doing a FT one obtains

Ps(k) =

∫
d3r e ik·r [1 + ξ] exp

[ ∞∑
n=1

in

n!
ki1 · · · kinCi1,··· ,in(r)

]

Keeping up to 2nd order and doing Gaussian integral gives GSM.



Cumulant approach: two streaming models

The non-linearity of the cumulant expansion implies there are two
streaming models, making two sets of predictions for ξ and P.

Expand Z = ln[1 +M] in powers of J , in Fourier space:

C̃(0)(~k) = ln
[
P(~k)

]
,

C̃(1)
i (~k) = Ξ̃i (~k)/P(~k), etc.

Now the relationship between P in real and redshift space is
algebraic:

Ps(k) = PK̃ = P exp

[ ∞∑
n=1

in

n!
ki1 · · · kin C̃i1,··· ,in(k)

]



Fourier streaming model

I The cumulants are constructed from the moments, and at any
order the Fourier and configuration space moments contain
the same information (they are FT pairs).

I The Fourier space SM can still be more convenient: one less
step.

I Connection between real and redshift space is algebraic!

I If you expand the exponential in K you get the moment
expansion – so FoG are spread over all moments.

I But for SM these terms are resummed in a convenient
way/compact form.

I We know FoG are ‘problematic’ non-linear terms. Such big
terms can be easily kept in the exponential in a clear way.

I Nice connection to ‘old’ dispersion models where K was taken
to be exp[−k2

‖σ
2] or (1 + k2

‖σ
2)−1.



Streaming model ↔ dispersion model

I Nice connection to ‘old’ dispersion models where K was taken
to be exp[−k2

‖σ
2] or (1 + k2

‖σ
2)−1.

I To quadratic order

Ps(k) = P(k) exp

ik‖ C̃(1)(k)︸ ︷︷ ︸
v12

−1

2
k2
‖ C̃

(2)(k)︸ ︷︷ ︸
σ2

12


I In PT the Ξij = 〈(1 + δ)(1 + δ)uiuj〉 expression contains a

term going as PL

∫
PL, which is UV-sensitive.

I This gives a contribution to C̃(2) that looks like a constant.

I i.e. a piece of K is exp[−k2
‖ const

2].

I But can also compute corrections self-consistently.



Reconstruction

I Density field reconstruction is used to improve the
performance of BAO by sharpening the acoustic peak in ξ.

I In ‘standard’ reconstruction, the shift field is computed from
the observed, redshift-space density field under the Zeldovich
approximation:

χk = − ik

k2

(
b + f ν2

)−1 S(k) δ(k)

where S is a smoothing kernel (e.g. a Gaussian).

I For modeling the reconstruced P or ξ the direct LPT
approach, (to lowest order in Ψ) has been computed, and
Eulerian versions exist.

I Can now systematically develop these schemes to arbitrary
order [expand in χ(x)− χ(q)].

Can ‘recycle’ all of the development of these RSD models to
models of reconstruction.



Conclusions

I Statistics of redshift-space or reconstructed fields can be
treated in a consistent manner

I Steal methods from one field for another.

I Four approaches, depending upon how one computes M.
I I focused on two here, because of time, but the others are also

very useful and powerful.

I An explicit calculation of the redshift-space power spectrum in
the Zeldovich approximation.

I A new variant of the streaming model in which the real to
redshift space transition is algebraic.



.

The End!



Redshift space

I The observed redshift of a cosmological object has
contributions from the Hubble expansion and the peculiar
velocity.

I We convert z to a distance using a distance-redshift relation.

I Thus in redshift surveys we measure not the true position of
objects but their redshift-space position:

s = r + r̂ · v/(aH) r̂

I This is both a blessing and a curse:
I it makes the analysis more complicated, but
I it gives access to more information.



Moment expansion approach (DF approach) I

Expand M in powers of J :

Ξi1,··· ,in(r) = 〈[1 + δa(x1)] [1 + δb(x2)] ∆χab,i1 · · ·∆χab,in〉

or

Ξ̃i1,··· ,in(k) = (−i)n ∂M̃ab(J , k)

∂Ji1 · · · ∂Jin

∣∣∣∣∣
J=0

then

Pab(k) =
∞∑
n=0

in

n!
ki1 · · · kin Ξ̃i1,··· ,in(k)

Perhaps the most straightforward of the methods. Can miss
e.g. FoG terms unless one resums afterwards – as in the DF
approach. If χ is O(δ), keeping only low-order terms gives

e.g. Kaiser or linear reconstruction.



Moment expansion approach (DF approach) II

Treating χ as O(δ):

Pab(k) = Ξ̃0(k) + iki Ξ̃i ,1(k)− 1

2
kikj Ξ̃2,ij(k) + · · ·

which to lowest order becomes Kaiser (for RSD) or linear
reconstruction, e.g.

P(k) = Pδδ + 2µ2Pδv + µ4Pvv

= PL + 2f µ2PL + f 2µ4PL

=
(
1 + f µ2

)2
PL(k)



Smoothing kernel

Expand M to get 〈e ···〉, 〈(δ + δ′)e ···〉 and 〈δδ′e ···〉 terms:

[1− i (∂λ1 + ∂λ2)− ∂λ1∂λ2 ]

〈
exp [iλ1δ1 + iλ2δ2 + iJ ·∆χ]

〉∣∣∣∣
λ1=λ2=0

Use the cumulant theorem on each term (· · · some algebra· · · ):

1 +M
(
J , ~r

)
= exp

[ ∞∑
n=2

in

n!
Ji1 · · · Jin 〈∆χi1 · · ·∆χin〉c

]

×
(

1 +
〈

(δ1 + δ2) e iJ ·∆χ
〉
c

+
〈
δ1e

iJ ·∆χ
〉
c

〈
δ2e

iJ ·∆χ
〉
c

+
〈
δ1δ2e

iJ ·∆χ
〉
c

)
,

(Note translation invariance unbroken!)



Dispersion models and TNS

I The kernel/prefactor, exp [
∑∞

n=2 · · · ], was historically assumed
to be a constant, zero-lag velocity dispersion.

I To get (e)TNS model:
I Replace exponential with phenomenological, FoG damping

term.
I Expand the exponentials in e.g. δ exp[iJ ·∆χ] and use 1-loop

PT or regPT to compute moments.
I Add a bias model.



Zeldovich P(k , ν)
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Black (dashed) lines are linear theory (with the Kaiser factor), blue
lines are Zeldovich times the Kaiser factor and red lines are the full

calculation (more damping along the line of sight).


