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✦ Because we can: Future surveys (DESI, Euclid,…) will measure 
the small scales. 

✦ Because we need to: For WL it is essential to probe up to k=7h/
Mpc, and GC constraints can improve (in principle). 

✦ Theory needs to catch up: We need to understand and model 
the behaviour of matter and galaxies in the non-linear regime. 
Possible approaches include: 

✦ Perturbation theory and EFT-like approaches (this talk). 

✦ Simulations and emulators. 

✦ Chosen method will most certainly involve combinations of 
the above.

why go non-linear?

Planck 



✦ Ingredients: 

✦ A model for the redshift space clustering 

✦ A model for the bias 

✦ In BOSS analyses (Beutler et al 2013, 2016) the Taruya-
Nishimichi-Saito (TNS) model with bias given by the McDonald 
and Roy model has been used. 

modelling the galaxy power spectrum

Planck 
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I. INTRODUCTION

II. THEORETICAL BACKGROUND

We will begin by presenting the two models we will be using in our forecasts. Both are based on standard pertur-
bation theory which has the following core assumptions

• We live on a spatially expanding, homogeneous and isotropic background spacetime.

• The gravitational interaction is described by general relativity.

• We work on scales far within the horizon but above scales at which �, ✓ ⇠ 1, so within the so called Newtonian
regime.

Aside from the above, each model includes phenomenological ingredients and includes a set of free parameters.

A. TNS Based Model

The first is based on the TNS model[1] combined with the tracer bias model of Mc.Donald and Roy [2]. This model
has been used in BOSS analyses to infer cosmological constraints [3, 4]. The model is given by
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where the terms in brackets are all constructed within standard Eulerian perturbation theory, while the exponential
prefactor is added as a phenomenological modelling of the Fingers-of-God e↵ect. Within this prefactor, �
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where D

1

is the linear growth factor at the desired redshift z and P

L

(k) is the linear matter power spectrum at the
initial redshift. The 1-loop dark matter spectra are then given by
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initial redshift. The 1-loop dark matter spectra are then given by
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free parameter, velocity dispersion

A(k, µ), B(k, µ), C(k, µ) : RSD correction terms

perturbative components
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It is a Standard Perturbation Theory model combined with a bias model, having 4 
free parameters in total: 

{b1, b2, N,�v}
✦ The problem with SPT/TNS is that we can’t trust it for k_max > 0.25 

h/Mpc at z=1 (or k_max > 0.1 h/Mpc at z=0) 

✦ SPT/TNS diverges from N-body results at larger k 

✦ EFTofLSS allows us to go to larger k consistently, and it is “nicely 
convergent”



Effective field theory of large scale structure
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The main idea is that short-distance (UV) non-linearities affect long distance physics 
and therefore need to be parametrised with suitable counter-terms.
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Effective field theory of large scale structure

Planck 

In terms of describing the observed power spectrum, our EFTofLSS modelling is TNS 
with a modified FoG effect + the EFT counter terms.

3

B. EFT Based Model

The second model we consider is one based on the EFTofLSS prescription for the redshift space dark matter
spectrum [6] given by
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where c

s,i

are the sound speed parameters of EFTofLSS, k2
NL

indicates the strong coupling scale which cannot be
determined a priori, so what is usually measured is the combination c
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(k) is the Eulerian perturbation
theory prediction for the redshift space power spectrum. This is almost identical to Eq.2.1 with b
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The galaxy spectrum model suggested here simply upgrades the dark matter spectrum P

S

SPT

(k) to a galaxy spectrum
as prescribed by the bias model used for the TNS approach. In this way we are only really adding EFTofLSS-like
counter terms (terms involving c

s,i

) to the SPT predicted redshift space spectrum. We further introduce an overall
factor of b2

1

to these counter terms. The explicit expression is thus
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where we have absorbed the k

2

NL

into the c

s,i

. We can motivate Eq.2.25 by arguing that the bias is well described
by the Mc.Donald and Roy model [2] and so we are just missing a suppression of power coming from UV physics
that can be described by the EFTofLSS counter-terms. This is of course a semi-phenomenological approach and for
a full treatment of bias within the EFTofLSS we direct the reader to [7]. The free parameters of this model are
{b

1

, b

2

, N, c̄

s,0

, c̄

s,2

, c̄

s,4

} which is an additional 2 over the TNS approach described by Eq.2.1.

In Eq.2.1 and Eq.2.25 we can immediately see the dependency on the model parameters. The logarithmic growth
rate f is also explicit. Cosmological parameter dependence enters through the initial power spectrum P

L

(k) with the
parameter �

8

1 completely degenerate with D

1

.

C. Fisher Analysis and Forecast Procedure

III. COMPARISON TO SIMULATIONS

In this section we determine fiducial values for the parameters of each model described in the previous section. This
is done by comparing to a set of Parallel COmoving Lagrangian Acceleration (COLA) simulations [8]. Specifically,
we use a set of 47 ⇤CDM simulations of box length 1024Mpc/h with 10243 dark matter particles and a starting
redshift of 49. The background cosmology is taken from WMAP9 [9]: ⌦

m

= 0.281, ⌦
b

= 0.046, h = 0.697, and
n

s

= 0.971 and �

8

(z = 0) = 0.844. From these dark matter simulations we use halo catalogs which are formed using
the Friend-of-Friend algorithm [] with a linking length of b = 0.2 times the mean particle separation. We consider
the redshifts z = 1 and z = 0.5 and halos with 20 or more particles are used. For our analysis we use all halos above
a mass of M

min

= 4 ⇥ 1012M�. We note that the mass cut choice will a↵ect the fiducial values and so we base
our choice on the corresponding number density of this mass cut which is n

h

= 1 ⇥ 10( � 3)h3

/Mpc3. This num-
ber density is similar to that estimated for the Euclid survey galaxy number density around the redshifts considered [].

1 �8 governs the amplitude of density perturbations at 8Mpc/h.

FoG effect

EFT counter terms

✦ This expression is motivated by arguing that the bias is well 
described by McDonald and Roy and so we are just missing an extra 
suppression of power coming from UV physics described by 
EFTofLSS.
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B. EFT Based Model
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where we have absorbed the k

2

NL

into the c

s,i

. We can motivate Eq.2.25 by arguing that the bias is well described
by the Mc.Donald and Roy model [2] and so we are just missing a suppression of power coming from UV physics
that can be described by the EFTofLSS counter-terms. This is of course a semi-phenomenological approach and for
a full treatment of bias within the EFTofLSS we direct the reader to [7]. The free parameters of this model are
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1
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s,2
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s,4

} which is an additional 2 over the TNS approach described by Eq.2.1.

In Eq.2.1 and Eq.2.25 we can immediately see the dependency on the model parameters. The logarithmic growth
rate f is also explicit. Cosmological parameter dependence enters through the initial power spectrum P

L

(k) with the
parameter �

8

1 completely degenerate with D
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.

C. Fisher Analysis and Forecast Procedure

III. COMPARISON TO SIMULATIONS

In this section we determine fiducial values for the parameters of each model described in the previous section. This
is done by comparing to a set of Parallel COmoving Lagrangian Acceleration (COLA) simulations [8]. Specifically,
we use a set of 47 ⇤CDM simulations of box length 1024Mpc/h with 10243 dark matter particles and a starting
redshift of 49. The background cosmology is taken from WMAP9 [9]: ⌦

m

= 0.281, ⌦
b

= 0.046, h = 0.697, and
n

s

= 0.971 and �

8

(z = 0) = 0.844. From these dark matter simulations we use halo catalogs which are formed using
the Friend-of-Friend algorithm [] with a linking length of b = 0.2 times the mean particle separation. We consider
the redshifts z = 1 and z = 0.5 and halos with 20 or more particles are used. For our analysis we use all halos above
a mass of M

min

= 4 ⇥ 1012M�. We note that the mass cut choice will a↵ect the fiducial values and so we base
our choice on the corresponding number density of this mass cut which is n

h

= 1 ⇥ 10( � 3)h3

/Mpc3. This num-
ber density is similar to that estimated for the Euclid survey galaxy number density around the redshifts considered [].

1 �8 governs the amplitude of density perturbations at 8Mpc/h.

It is a Standard Perturbation Theory model combined with a bias model and 
EFTofLSS counter terms, having 6 free parameters in total: 

{b1, b2, N, c̄s,0, c̄s,2, c̄s,4}



FIDUCIAL PARAMETERS: FITS TO SIMULATIONS
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We want to perform forecasts for Stage IV surveys (TNS vs EFT), and try to 
understand the EFT parameters. We use fits to simulations (COLA). We have z=1 and 
z=0.5 results. I’ll stick to z=1 for this talk.

5

FIG. 1

FIG. 2: Same as Fig.2 for z = 1.

IV. FORECAST RESULTS

Include various studies here, e.g. priors.

simulations data from Hans Winther - thanks Hans!



FORECASTS FOR STAGE IV SURVEYS
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We have written a fast, user-friendly Python code (in the form of a Jupyter notebook) 
to forecast constraints using the TNS and EFTofLSS models. Paper in preparation, 
code will be publicly available (and hopefully useful for Euclid’s IST:non-linear).

tNs vs eft: FITS RESULTS (FIDUCIAL VALUES)

4

To determine the fiducial parameters we perform a fit to the data using the redshift space multipoles. The PI-
COLA multipoles are measured using the distant-observer approximation 2 and averaged over three line of sight
directions. We further average over the 47 PICOLA simulations.

On the theoretical side, the multipoles are modeled as
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(µ) denote the Legendre polynomials and P

S(k) is given by Eq.2.1 and Eq.2.25. Since our simulations are lim-
ited in size and resolution we will limit our modeling and analysis to the monopole (` = 0) and quadrupole (` = 2). We
also note that the fits are meant to get a rough estimate of realistic parameter values and so small inaccuracies in the
COLA approach as well as those coming from having a limited number of realizations are unimportant in this analysis.
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where Cov
`,`

0 is the covariance matrix between the di↵erent multipoles. N

dof

is the number of degrees of freedom
given by N

dof

= 2 ⇥N

bins

�N

params

where N

bins

is the number of k�bins used in the analysis and N

params

is the
number of free parameters in the theoretical model. Here N

params

= 4 for the TNS model (Eq.2.1) and N

params

= 6
for the EFT model (Eq.2.25). We apply linear theory to model the covariance matrix between the multipoles (see
appendix C of [1] for example) and choose a number density of n = 1 ⇥ 10( � 3)h3

/Mpc3 and a survey volume of
V

s

= 4Gpc3/h3 for z = 1 and V

s

= 2Gpc3/h3 for z = 0.5.

We choose N

bins

corresponding to a k

max

that gives us �

2

red

= 1. This gives a fair indication of the point at
which the model gives a good fit to the data. We present the fits for z = 0.5 and z = 1 in Table.II and Fig.2 and
Fig.?? show the modeled multipoles and COLA measurements using the best fit parameter.

TABLE I: Number of bins, k
max

and fiducial parameters for TNS and EFT models found by least �2 fit to the
COLA data

Model TNS EFT

z 0.5 1 0.5 1

N
bins

43 40 35 52

k
max

0.264 0.245 0.215 0.32

b1 1.362 1.788 1.450 1.840

b2 -1.435 -1.854 -0.7924 -1.336

N 2461 2060 1089 1226

�
v

6.306 5.132 - -

c2
s,0 - - 0.6100 0

c2
s,2 - - 6.959 0

c2
s,4 - - 10.64 11.29

TABLE II: Number of bins, k
max

and fiducial parameters for TNS and EFT models found by least �2 fit to the
COLA data

Model z N
bins

k
max

[h/Mpc] b1 b2 N �
v

[Mpc/h] c̄2
s,0[(h/Mpc)�2] c̄2

s,2[(h/Mpc)�2]] c̄2
s,4[(h/Mpc)�2]]

TNS 0.5 43 0.264 1.362 -1.435 2461 6.306 - - -

TNS 1 40 0.245 1.788 -1.854 2060 5.132 - - -

EFT 0.5 35 0.215 1.450 -0.7924 1089 - 0.6100 6.959 10.64

EFT 1 52 0.32 1.840 -1.336 1226 - 0 0 11.29

2
i.e we assume that the observer is located at a distance much greater then the boxsize (r � 1024Mpc/h), and so we treat all the

lines-of-sight as parallel to the chosen Cartesian axes of the simulation box. Next, we use an appropriate velocity component (v
x

, v
y

or

v
z

) to disturb the position of a matter particle.

For our forecasts we vary (f, s8, 
DA, H), the shape parameters 

(wm,h,wb,ns), and the TNS/EFT 
parameters. We then project to 
(fs8) and show full marginalised 
errors, with and without priors.
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GROWTH CONSTRAINTS RESULTS (PRELIMINARY)

Planck 

✦ TNS: gives a Euclid-like marginalised 6.8% error on (fs8) at z=1 with kmax=0.25, 
going to 5.2% using Planck priors.   

✦ EFTofLSS: gives a Euclid-like marginalised marginalised 6.2% error at z=1 with 
kmax=0.32, which only slightly improves using Planck priors.  

✦ If (wrongly!)  you use TNS until kmax=0.32, you get a factor of 3 better constraints on 
(fs8) than with EFTofLSS. 

✦ So there is a tradeoff between the gain from larger kmax and the loss from extra 
parameters that have to be marginalised over (not surprising). 

✦ Adding strong priors -basically fixing- the EFT parameters the (fs8) error improves 
considerably, down to 4.5%. 

✦ Simulations very important. Different (non-GR) models can have very different EFT 
parameters best-fit.  

✦ We need to test a few exotic models using proper simulations. We also need fast 
emulators.


