DECONSTRUCTING THE NEUTRINO MASS CONSTRAINTS FROM GALAXY REDSHIFT SURVEYS

Sexten, 5th June 2018

Aoife ("ee-feh") Boyle & Eiichiro Komatsu Max Planck Institute for Astrophysics, Munich arXiv: 1712.01857

MOTIVATION

- The standard model of particle physics is incomplete.
- The upper limit on the sum of the neutrino masses still comes from cosmology.
 - Where exactly does the constraining power come from?
 - How do the constraints change if we allow deviation from the standard $\Lambda CDM + M_{\nu}$ model?
- For our constraints to be convincing, it is crucial that they are **independent of the cosmological model assumed.**

arXiv: 1712.01857

CURRENT STATUS

- Particle physics: $M_{\nu} = \Sigma m_{\nu} \ge 0.06 \text{ eV}$
- Cosmology (optimistic): M_ν < 0.12 eV; 95% CL (Vagnozzi +, 2017)
 → Planck: TT data, τ measurements (high frequency), cluster counts from thermal SZ effect, high-l polarisation data (may have systematic issues)
 - \rightarrow Local H_0 measurements
 - → BAO measurements from BOSS, 6dFGs, WiggleZ

→ Galaxy power spectrum from BOSS

arXiv: 1712.01857

CURRENT STATUS

- Particle physics: $M_{\nu} = \Sigma m_{\nu} \ge 0.06 \text{ eV}$
- Cosmology (optimistic): $M_{\nu} < 0.15 \text{ eV}$; 95% CL (Vagnozzi +, 2017) \rightarrow Assumes $\Lambda CDM! (+M_{\nu})$
- Future surveys (PFS, DESI, Euclid...) predict constraints on $\sigma M_{\nu} \ll 0.1$ eV \rightarrow could allow us to exclude the inverted neutrino mass hierarchy.

HOW DOES $P_{gg}(k,\mu)$ HELP CONSTRAIN M_{ν} ?

Effects can be divided into two main categories:

- Geometric information
- Structure growth information

HOW DOES $P_{gg}(k,\mu)$ HELP CONSTRAIN M_{ν} ?

Geometric Information

- Constrains cosmology through measurements of $D_A(z)$ and therefore H(z).
- Includes BAOs.
- Also other characteristic scales (matter-radiation equality, Silk damping scale) and the Alcock-Paczynski test.

arXiv: 1712.01857

HOW DOES $P_{gg}(k,\mu)$ HELP CONSTRAIN M_{ν} ?

Structure Growth Information

- Redshift-space distortions (RSDs) probe the structure growth rate f(z).
- The shape and amplitude of
 P_{gg}(k, μ) provide information on the underlying matter power spectrum, P_{mm}(k).

 $\overline{7}$

arXiv: 1712.01857

OUR ANALYSIS: FORECASTING CONSTRAINTS

Fisher Matrix:

$$F_{\alpha\beta} = \frac{\partial P_{gg}}{\partial \theta_{\alpha}} C^{-1} \frac{\partial P_{gg}}{\partial \theta_{\beta}}$$

Free parameters:

- M_{ν}
- ACDM parameters: θ_s^* , A_s , n_s^* , ω_b^* , ω_c , τ
- Extensions: Ω_k , w_0 , w_a
- * A conservative CMB prior ('compressed likelihood') from Planck is included on these parameters.

arXiv: 1712.01857

COMBINED CONSTRAINTS (MOST OPTIMISTIC) Constraints achievable from fitting entire galaxy power spectrum \rightarrow combines geometric and structure growth information.

Depend heavily on assumed cosmology!

9

arXiv: 1712.01857

EXAMPLE: ISOLATING CONSTRAINTS FROM BAOS

- $P_{gg}(k,\mu) = (b + f\mu^2)^2 P_{mm}(k) + n_g^{-1}$
- $P_{mm}(k) = P_{BB}(k) + P_{BAO}(k)$
- Do a 2-step Fisher matrix calculation:

 - Marginalise over P_{BB} , RSD term,

arXiv: 1712.01**&\$€.**____

BAO-ONLY CONSTRAINTS

Combined constraints for comparison

arXiv: 1712.01857

 $\sigma(M_{\nu})$ [eV

Extreme reduction in constraining power if non-zero curvature allowed.

BAO-ONLY CONSTRAINTS

Effects of changes in Ω_k and M_{ν} on H(z) and $D_A(z)$ are degenerate!

arXiv: 1712.01857

- Our paper also provides isolated M_{ν} constraints for RSDs, the AP test, etc.
- Recurring problem: Constraints are heavily cosmology-dependent.
- How can we extract more robust neutrino mass constraints?
- We require a distinct, mass-sensitive signature of massive neutrinos that is not mimicked by other cosmological parameters.

Neutrino Free-Streaming

- Massive neutrinos are relativistic at early times and become non-relativistic over time.
- Neutrinos free-stream out of small perturbations while still relativistic, causing a relative suppression in the power spectrum on small scales.

 Ω_m held constant:

arXiv: 1712.01857

Aoife Boyle

Neutrino Free-Streaming

This effect can be measured in two independent ways:

- In P_{mm} (right), constrained from P_{gg} .
- In the structure growth rate f(k), constrained using RSDs.

 Ω_m held constant:

arXiv: 1712.01857

Aoife Boyle

 Redshift (z):
 - 0.0 - 2.0

 - 1.0 - 3.0

Combined constraints for comparison

arXiv: 1712.01857

 $\sigma(M_{\nu})$

Independent of assumed cosmology!

Aoife Boyle 17

COMBINED CONSTRAINTS AGAIN...

IMPORTANCE OF τ **DATA** Constraints on M_{ν} heavily dependent on constraints on τ .

No constraint on au / au constraint from Planck / au known perfectly.

arXiv: 1712.01857

Aoife Boyle

IMPORTANCE OF τ **DATA**

- In combination of CMB and galaxy survey information, M_{ν} and τ strongly correlated.
- *τ* currently very weakly constrained by CMB polarisation.
- Improved CMB polarisation measurements / reionisation surveys will improve τ constraints.
- Free-streaming constraints do not suffer from this effect.

The LiteBIRD satellite:

SUMMARY AND CONCLUSIONS

- Current/forecasted constraints on M_{ν} heavily dependent on ΛCDM assumption.
- Isolating the signatures of neutrino free-streaming gives much more robust constraints.
- Even if we take the most optimistic (combined) constraints, we are ultimately limited by the accuracy to which τ is known.

TO BE CONTINUED...

Upcoming implementations:

- More comprehensive CMB priors.
- CMB lensing and galaxy-CMB lensing.
- Non-linear bias.