No evidence for departures from General Relativity from the clustering and velocities of galaxies on cosmological scales

Outline

- Theory
- The theoretical challenge of testing theory of gravity
- How we can solve these problems
- Data
- What kind of data we need
- How to control systematics

THEORY

The dependence of galaxy clustering on galaxy's property

The dependence of redshift space galaxy clustering on galaxy's property

- For the *r*-band selection, galaxy clustering of volume-limited sample depends on the number density of samples
- For the same number density, r-band selected and stellarmass selected galaxies have different clustering

The impact of baryon physics on the distribution of matter and abundance of halos

- AGN feedback changes the underlining distribution of the cold dark matter on small scales.
- AGN feedback changes halo mass function as well, even at the very massive end

What can we do?

Halo property VS Galaxy property

Dark matter halo accretion history

Total baryonic mass of galaxies at the epoch of V_{peak}

Stellar mass of galaxies at the epoch of V_{peak}

Stellar mass is gravity specific

• Most stellar mass of galaxies come from star forming while not from the merger of galaxies, except most massive ones

Stellar mass is gravity specific

• The specific star forming rate of the main sequence galaxies is nearly constant

Stellar mass is gravity specific

- The scaling relation at different redshifts can be normalized to an epoch using a very simple evolution model
- M_* of a halo at the epoch of V_{peak} is only a function of $(V_{peak}, redshift)$
- The intrinsic scatter is very small

The scatter in $V_{peak} - M_*(z = 0)$ relation

The origin of scatter in $V_{peak} - M_*(z = 0)$ relation

- Dark matter can be striped after V_{peak} due to gravitational tidal force
- Gas component can be more easily striped due to both tidal force and ram-pressure.
- After V_{peak} , stellar mass can grow due to the continuing of star forming. But stellar mass can also be lost due to stellar mass striping. These two effects cause the scatter in $V_{peak} - M_*(z = 0)$ relation.

The origin of scatter in $V_{peak} - M_*(z = 0)$ relation

- Stellar mass striping is the major reason for the scatter but it is very like due to numerical issues but not real physical reason.
- Feedback does not blow a star away.
- The only interaction between stars is gravity.
- Massive stars can burn-out but they only sub-dominate the total stellar mass of a galaxy.
- A star falling onto a back hole is vary rare

The impact of scatter on clustering

- The impact of scatter can be mitigated by high number densities
- High number density samples are less affected by scatter

Low density

High density

The impact of baryon physics on subhalo clustering

• From the EAGLE simulation, baryon physics has a limited impact on the positions of sub-halos on scales r > 1 Mpc/h

Jonas Chaves-Montero, et al 2015

Stellar mass function in hydro-dynamic simulations

Illustris and Illustris TNG

EAGLE

The impact of baryon physics on dark matter clustering

- The impact of baryon physics on dark matter clustering depends on the modeling of baryonic physics
- But observations put strong constraints on baryon physics models.
- It seems that if different galaxy formation models can reproduce the same stellar mass function, the impact on dark matter field is very similar.

Observational constraints on stellar components of galaxies

25

Abundance Matching

- Abundance matching does not have galaxy bias!
- The shape of the stellar mass function can put constraints on baryonic physics!!
- Baryonic physics in modified gravity models should be reasonable

DATA

NYU Value-Added Galaxy Catalog

- VAGC is based on the SDSS 7 main galaxy sample
- Relative photometric calibration which uses the same objects in over laps (good ~1%)
- BBRIGHT sub-sample with a uniform *r*-band apparent magnitude limit r<17.60
- Without corrections for fibre collisions

Systematics in stellar mass

- Stellar initial mass function (IMF)
- Difficult to accurately determine the total flux of a galaxy from image data (aperture effect, background subtraction, dust extinction)
- Different Methods (e.g. photometric template fit, a combination of spectroscopy and photometric, a single-colour based estimator)

Use number densities and rank of galaxies

M(z) = M(z=qz0)

• Construct volume-limited samples with fixed number densities

The impact of systematics on galaxy clustering

Galaxies ranked by *r*-band magnitude

Volume-limited sample complete in stellar mass

- A flux-limited survey (*r*-band)
- *r*-band mass-to-light ratio
- At a given redshift, for given stellar mass, find the reddest galaxy!

Galaxies ranked by stellar mass

The impact of stellar mass systematics on galaxy clustering

Galaxies ranked by stellar mass

The faction of common galaxies

Fibre Collisions

Fibre collisions mitigation

Wide-angle and geometry effects

- Parallel approximation does not work for wide-angle galaxy pairs
- RSD is also affected by survey geometries!! Galaxy pairs within a certain range of angle might be lost due to the survey geometry effect.

SHAM mock

- Multidark Planck simulation
- Boxsize: 400Mpc/h
- 3840³ particles
- Mass resolution: $9.6 \times 10^7 M_{\odot}/h$

SHAM mock

- To address the wide-angle and geometry effects, a SHAM mock is necessary.
- The SHAM mock has exactly the same geometry as the real data.

Theory VS Observation

Theory VS Observation

Theory VS Observation

LCDM is perfect !!!!!!

This is not tuned!!!

Modified Gravity

$$s = \frac{1}{2\kappa^2} \int dx^4 f(R)$$

Why f(R)?

The speed of gravitational wave

$c_g = c$		$c_g eq c$	
Horndeski	General Relativity quintessence/k-essence [47] Brans-Dicke/ $f(R)$ [48, 49] Kinetic Gravity Braiding [51]	quartic/quintic Galileons [13, 14] Fab Four [15] de Sitter Horndeski [50] $G_{\mu\nu}\phi^{\mu}\phi^{\nu}$ [5], $f(\phi)$ ·Gauss-Bonnet [53]	
реуопа н.	Derivative Conformal (19) [17] Disformal Tuning (21) quadratic DHOST with $A_1 = 0$	quartic/quintic GLPV [18] quadratic DHOST [20] with $A_1 \neq 0$ cubic DHOST [23]	

Non-viable after GW170817

f(R)

Effective density field in f(R) gravity

Effective halo catalogue

He, et al PRL 2015

Effective halo catalogue

Adiabatic hydro-dynamical simulation

He, et al PRD 2015

Effective halo catalogue

- Illustris TNG full physics
- F6 with the same baryonic physics as LCDM

SHAM predictions in f(R) gravity

He, et al PRL 2016

Screening mechanism in f(R) gravity

SHAM predictions in Redshift space

Final results

Conclusions

LCDM is perfect!

Don't mess with Einstein!!!!!

Thank you!