DESI and the missing-observation problem

Davide Bianchi

ICG Portsmouth

Sexten 02/07/2018

Based on:

- **DB** & W. J. Percival arXiv:1703.02070
- W. J. Percival & **DB** arXiv:1703.02071
- **DB** et al. arXiv:1805.00951

The Dark Energy Spectroscopic Instrument (DESI) galaxy survey

Mayall telescope (4m) in kitt Peak, Arizona

DESI footprint

total area ~ 14,000 deg² total number of targets ~ 30×10^6

DESI targets

Galaxy type	$\mathbf{Redshift}$	Bands	Targets	Exposures	Good z 's	Baseline
	range	used	$per deg^2$	$\mathrm{per} \mathrm{deg}^2$	$per deg^2$	sample
LRG	0.4 - 1.0	r,z,W1	350	580	285	$4.0 \mathrm{M}$
ELG	0.6 - 1.6	$_{g,r,z}$	2400	1870	1220	1 7.1 M
QSO (tracers)	< 2.1	g,r,z,W1,W2	170	170	120	$1.7~{ m M}$
QSO (Ly- α)	> 2.1	$_{g,r,z,W1,W2}$	90	250	50	$0.7 { m M}$
Total in dark time			3010	2870	1675	23.6 M
BGS	0.05 - 0.4	r	700	700	700	9.8 M
Total in bright time			700	700	700	9.8 M

DESI collaboration arXiv:1611.00036

ELG = emission line galaxies

- LRG = luminous red galaxies
- QSO = quasars
- BGS = bright galaxy survey

Why do we want to measure the 3D position of 30M galaxies?

Parent catalogue of potential targets

Figure 3.19: The primary imaging surveys that will result in targeting data for the DESI project. The footprint at DEC $\leq +34^{\circ}$ will be covered using the Dark Energy Camera (DECam) on the Blanco 4m telescope at Cerro Tololo Inter-American Observatory. The Dark Energy Camera Legacy Survey (DECaLS, in yellow), the Dark Energy Survey (DES, in orange), and the extended DECaLS in the North Galactic Cap (DECaLS+, in purple on left) are underway. A proposal for the remaining extended DECaLS in the South Galactic Cap (DECaLS+, in purple on right) will be submitted. Imaging of the North Galactic Cap region at DEC $\geq +34^{\circ}$ (cyan) will be covered with the 90Prime camera at the Bok 2.3-m telescope in g- and r-bands (BASS: the Beijing-Arizona Sky Survey) and with the upgraded MOSAIC-3 camera on the Mayall 4m telescope in z-band (MzLS: the MOSAIC z-band Legacy Survey). Both the Bok and Mayall telescopes are located on Kitt Peak National Observatory.

DESI collaboration 2016

Fiber assignment and missing observations

DESI observing strategy

DESI observing strategy

DESI observing strategy

etc...

Targeting realisation 1 (pass 1)

Targeting realisation 2 (pass 1)

2 point correlation function

2 point correlation function

Countermeasures for missing observations

- Agular upweighting Hawkins et al. 2003
- Nearest neighbour Anderson et al. 2012
- Correlation function decomposition Guo et al. 2012
- Distribution function & top hat function Hahn et al .2016
- Target sampling rate De la Torre et al. 2013, Pezzotta et al. 2017
- Mode subtraction (configuration space) Burden et al. 2017
- Mode subtraction (Fourier space) Pinol et al. 2017, Hand et al.
 2017
- Pairwise inverse probability (PIP) Bianchi & Percival 2017, Percival & Bianchi 2017

Pairwise-Inverse-Probability (PIP) weights: correlation-function estimator

$$\xi(\vec{s}) = \frac{DD(\vec{s})}{RR(\vec{s})} - 2\frac{DR(\vec{s})}{RR(\vec{s})} + 1 \quad \text{Landy \& Szalay 1993}$$

Pairwise-Inverse-Probability (PIP) weights: correlation-function estimator

 $DD(\vec{s}) =$

 w_{mn}

$$\xi(\vec{s}) = \frac{DD(\vec{s})}{RR(\vec{s})} - 2\frac{DR(\vec{s})}{RR(\vec{s})} + 1 \quad \text{Landy \& Szalay 1993}$$
$$DD(\vec{s}) = \sum_{\vec{x}_m - \vec{x}_n \approx \vec{s}} w_{mn} \frac{DD_a^{(p)}(\theta)}{DD_a(\theta)}$$
$$DD_a(\theta) = \sum_{\vec{u}_m \cdot \vec{u}_n \approx \cos(\theta)} w_{mn}$$
$$w_{mn} = \frac{1}{p_{mn}} = \frac{1}{p_m p_n(1 + c_{mn})}$$

Pairwise-Inverse-Probability (PIP) weights: correlation-function estimator

$$\xi(\vec{s}) = \frac{DD(\vec{s})}{RR(\vec{s})} - 2\frac{DR(\vec{s})}{RR(\vec{s})} + 1 \quad \text{Landy \& Szalay 1993}$$

$$DD(\vec{s}) = \sum_{\vec{x}_m - \vec{x}_n \approx \vec{s}} w_{mn} \frac{DD_a^{(p)}(\theta)}{DD_a(\theta)}$$

$$DD_a(\theta) = \sum_{\vec{u}_m \cdot \vec{u}_n \approx \cos(\theta)} w_{mn}$$

$$w_{mn} = \frac{1}{p_{mn}} = \frac{1}{p_m p_n(1 + c_{mn})}$$

$$DR(\vec{s}) = \sum_{\vec{x}_m - \vec{y}_n \approx \vec{s}} w_m \frac{DR_a^{(p)}(\theta)}{DR_a(\theta)}$$

$$DR_a(\theta) = \sum_{\vec{u}_m \cdot \vec{v}_n \approx \cos(\theta)} w_m$$

$$w_m = \frac{1}{p_m}$$

Practical implementation: summary

The pair weights are computed (as usual) while doing pair counts via a simple function of individual weights

"Why angular upweighting?"

- Natural way to minimise the variance, see W. J.
 Percival & DB arXiv:1703.02071
- Allows to relax the assumption that no pair has zero probability of being observed (not true, e.g., for BOSS and DESI) to the weaker assumption that all the zero-probability pairs have the same clustering properties of the observed pairs (true, e.g., for BOSS and DESI)

Algorithm

- 1. Evaluate PIP weights by running the targeting algorithm many times (N~1000?)
- 2. Compute the angular pair counts DD and DR of the full parent sample
- 3. Compute the angular pair counts DD and DR of the observed sample using PIP weights
- Compute the 3D correlation function of the observed sample via PIP weights + ang. upweighting (i.e. ratios between 2 and 3)

Comparison to mocks: DESI footprint vs our sample

25 QPM mocks, see A. Burden, N. Padmanabhan Robert N. Cahn, M. J. White, L. Samushia 2016

completeness = 25%

completeness = 48%

completeness = 67%

completeness = 81%

Error vs cosmic variance

Quadrupole

ref

Ρ1

P2

Р3

Ρ4

Error vs uniform dilution

Summary

- We developed a theoretically-motivated weighting scheme capable to recover unbiased estimates of the galaxy clustering for a large class of targeting algorithm
- We provided a practical implementation of the algorithm
- We showed that this approach works for the DESI survey

(Main) Things to do:

- Fourier space
- Reconstruction