Numerical Simulations of LSS Redshift Anisotropy Maps: A new Cosmological Statistic

Raúl E. Angulo Donostia International Physics Center

Carlos Hernadez-Monteagudo, Guillaume Hurier J. Chaves-Montero, R. Adam, S. Bonoli, G. Aricó

European Research Council Established by the European Commission

i) Measure angles and redshiftsii) Transform to 3D positionsiii) Compute Statistics

Fundamental Physics

Problems with standard clustering statistics

1. Needs to assume an underlying cosmology and parameters

2. Very sensitive to observational systematics

3. Non-tomographic

A new, alternative cosmological statistic

A new, alternative cosmological statistic

- i) Dœns't assume any cosmological model
- ii) It can be computed in small redshift bins
- iii) Insensitive to additive/multiplicative systematics
- iv) Highly correlated to the velocity field

1. Theoretical Understanding Hernandez-Monteagudo et al (submitted)

2. Measurements of Growth Hurier et al (in prep); Adam et al (in prep)

3. Finding the missing baryons Chaves-Monteagudo et al (in prep)

The redshift anisotropy at a given angular position is a l-o-s integral:

$$\bar{z} + \delta z(\hat{\mathbf{n}}) = \frac{\int d\eta \, \eta^2 \bar{n}(\eta) \left(1 + b_g \delta_{\mathbf{m}}(\eta, \hat{\mathbf{n}})\right) \left(z_H + z_{vlos} + z_\phi\right) W(z_H + z_{vlos} + z_\phi; \, \sigma_z)}{\int d\eta \, \eta^2 \bar{n}(\eta) \left(1 + b_g \delta_{\mathbf{m}}(\eta, \hat{\mathbf{n}})\right) W(z_H + z_{vlos} + z_\phi; \, \sigma_z)}$$

The redshift at a given angular position is a l-o-s integral:

This can be computed using a simple estimator:

$$\delta z(\hat{\mathbf{n}}) = \sum_{j} (z_j - \bar{z}) W_j / \sum_{j} W_j$$
 9

Densities

RAMs

Peculiar Velocities

Perturbatively (assuming delta & v/sigma_z << 1)

$$\bar{z} + \delta z(\hat{\mathbf{n}}) = \mathcal{F}[z_H] + \mathcal{F}[b_g \delta_{\mathbf{m}} \left(z_H - \mathcal{F}[z_H] \right)] + \mathcal{F}\left[\left(z_\phi + \frac{\mathbf{v} \cdot \hat{\mathbf{n}}}{c} (1 + z_H) \right) \left(1 - \frac{d \log W}{dz} (z_H - \mathcal{F}[z_H]) \right) \right] + \mathcal{O}(2^{\mathrm{nd}})$$

$$\mathcal{F}[Y] = \frac{\int d\eta \, \eta^2 \bar{n}(\eta) W(z_H; \, \sigma_z) Y(\eta)}{\int d\eta \, \eta^2 \bar{n}(\eta) W(z_H; \, \sigma_z)}$$

$$\begin{aligned} \Delta_l^{\delta_{\rm m}} &= \int d\eta \, \Sigma(\eta) \, W(z_H; \, \sigma_z) D_{\delta_{\rm m}} \delta z_H \, j_l(k\eta) \\ \Delta_l^{vlos} &= \int d\eta \, \Sigma(\eta) \, W(z_H; \, \sigma_z) \frac{H(z_H)}{a} \frac{dD_{\delta_{\rm m}}}{dz} \left(1 - \frac{d\log W}{dz} \delta z_H\right) \frac{j_l'(k\eta)}{k} \end{aligned}$$

$$C_l^{\alpha,\,\beta} = (2/\pi) \int dk \, k^2 P_{\rm m}(k) \Delta_l^{\alpha}(k) \Delta_l^{\beta}(k)$$

$$C_l^{\delta z,\,\delta z} = b_g^2 C_l^{\delta,\,\delta} + 2b_g C_l^{\delta,\,vlos} + C_l^{vlos,\,vlos}$$

Comparison with DM @ z=0.5 from 1000 COLA Lightcone Mocks

Let's consider the observed number of galaxies under additive (e) and Multiplicative bias (gamma) created by systematic errors:

$$n^{\mathrm{obs}}(\mathbf{r}) = \gamma \bar{n}(1 + \delta_g(\mathbf{r}) + \epsilon)$$

The same errors in the RAMs:

$$(\delta z)^{\text{obs}}(\hat{\mathbf{n}}) \simeq \delta z(\hat{\mathbf{n}}) + \mathcal{F}[\epsilon(z_H - \mathcal{F}[z_H])]$$

RAMs are formally insensitive to multiplicative biases, and roughly insensitive to additive biases as long as dN/dz is constant over W(z)

1. Theoretical Understanding

2. Application to data

3. Finding the missing baryons

Analysis of 1.3 million galaxies in DR13

HealPix tesselation with 0.84 deg² pixel

i) LOWZ & CMASS in DR12 - DR13

ii) 51 redshift bins, with $\sigma_z = 0.01$

iii) Covariance in delta-delta, delta-delta_z, and delta_z-delta_z from PATCHY mocks

iv) We fit for {b $\sigma_{_8}$, f $\sigma_{_8}$, SN_z, Sn_{delta}}

v) Adopt Planck (TT, TE, EE), BAO, SNe Likelihoods for other cosmological parameters

Growth measurement in ~18 independent redshift bins

A 2.8% measurement of the growth rate: $f\sigma_8 = 0.478 \text{ pm } 0.013$ A 9% measurement of growth-rate index: $\gamma = 0.505 \text{ pm } 0.045$

One of the strongest cosmological constraints so far on massive Neutrinos (improvement of 25% over Alam et al)

Theoretical Understanding Application to data

3. Finding the missing baryons

Thomson scattering of free-electrons and CMB photons creates secondary anisotropies in the observed CMB temperature fluctuations:

$$\frac{\Delta T_{\rm kSZ}(\hat{n})}{T_{\rm CMB}} = -\sigma_T \int dl \, n_e \left(\frac{\mathbf{v} \cdot \hat{n}}{c}\right)$$

The kSZ is not sensitive to the temperature of the gas, only depends on its Momentum.

Unfortunately, kSZ << tSZ << primordial fluctuation.

However, the kSZ could be detected through x-correlation with the velocity field

RAMs are a proxy for the velocity field

Our sample consists of ${\sim}1.3$ million galaxies and ${\sim}500k$ quasars, and 4 Planck Temperature maps

Sample	Range	$\langle b \rangle$	$\langle M_h \rangle [10^{13} h^{-1} \mathrm{M}_\odot]$
6dF-GAL	all	1.48	3.5
DR12-GAL	z < 0.43	2	5.2
DR12-GAL	z > 0.43		$10^{1.46(1+z)-1.86}$
DR14-QSO	<i>z</i> < 1.8	$0.3(1+z)^2 + 0.6$	0.6
DR14-QSO	1.8 < <i>z</i> < 3		$10^{-0.84(1+z)+2.17}$
DR14-QSO	z > 3		$10^{0.2(1+z)-1.10}$

foreground-cleaned maps:

SMICA COMMANDER SEVEM NILC

2736 Angular power spectra: 4 maps, 19 redshift bins, 36 apertures

z

Summary RAMs: a promising cosmological tool

i) Dœns't assume any cosmological model
ii) It can be computed in small redshift bins
iii) Insensitive to additive/multiplicative systematics
iv) Highly correlated to the velocity field

Application to data leads to strong cosmological inferences and helps in the quest for missing baryons